1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194
|
#include "caffe2/operators/rms_norm_op.h"
#include <vector>
#include <thrust/tuple.h>
#include "c10/cuda/CUDAMathCompat.h"
#include "caffe2/core/context_gpu.h"
#include "caffe2/utils/math.h"
#include "caffe2/utils/math/reduce.cuh"
#include "caffe2/utils/math/utils.h"
namespace caffe2 {
namespace {
template <typename T>
__global__ void RowwiseRMSCUDAKernel(int64_t N, T eps, const T* X, T* rrms) {
__shared__ typename BlockReduce<T>::TempStorage rms_storage;
const int64_t i = blockIdx.x;
T sum = 0;
for (int64_t j = threadIdx.x; j < N; j += blockDim.x) {
const int64_t index = i * N + j;
sum += X[index] * X[index];
}
sum = BlockReduce<T>(rms_storage).Sum(sum);
if (threadIdx.x == 0) {
rrms[i] =
c10::cuda::compat::rsqrt(sum / static_cast<T>(N) + static_cast<T>(eps));
}
}
template <typename T>
__global__ void RMSNormForwardCUDAKernel(
int64_t N,
const T* X,
const T* gamma,
const T* beta,
const T* rrms,
T* Y) {
const int64_t i = blockIdx.x;
for (int64_t j = threadIdx.x; j < N; j += blockDim.x) {
const int64_t index = i * N + j;
Y[index] = rrms[i] * X[index] * gamma[j] + beta[j];
}
}
template <typename T>
__global__ void ComputeInternalGradientsCUDAKernel(
int64_t N,
const T* dY,
const T* X,
const T* gamma,
const T* rrms,
T* c2) {
__shared__ typename BlockReduce<T>::TempStorage ds_storage;
const int64_t i = blockIdx.x;
T ds = 0;
for (int64_t j = threadIdx.x; j < N; j += blockDim.x) {
const int index = i * N + j;
ds += dY[index] * X[index] * gamma[j];
}
ds = BlockReduce<T>(ds_storage).Sum(ds);
if (threadIdx.x == 0) {
c2[i] = -ds * math::utils::Cube<T>(rrms[i]) / static_cast<T>(N);
}
}
template <typename T>
__global__ void RMSNormBackwardCUDAKernel(
int64_t N,
const T* dY,
const T* X,
const T* gamma,
const T* c1,
const T* c2,
T* dX) {
const int64_t i = blockIdx.x;
for (int64_t j = threadIdx.x; j < N; j += blockDim.x) {
const int64_t index = i * N + j;
dX[index] = c1[i] * dY[index] * gamma[j] + c2[i] * X[index];
}
}
// Assume the batch size will not be very large, direct implementation is the
// most efficient one.
template <typename T>
__global__ void GammaBetaBackwardCUDAKernel(
int64_t M,
int64_t N,
const T* dY,
const T* X,
const T* rrms,
T* dg,
T* db) {
const int64_t j = blockIdx.x * blockDim.x + threadIdx.x;
if (j < N) {
T sum1 = 0;
T sum2 = 0;
for (int64_t i = 0; i < M; ++i) {
const int64_t index = i * N + j;
sum1 += dY[index] * X[index] * rrms[i];
sum2 += dY[index];
}
dg[j] = sum1;
db[j] = sum2;
}
}
} // namespace
template <>
template <typename T>
bool RMSNormOp<CUDAContext>::DoRunWithType() {
const auto& X = Input(0);
const auto& gamma = Input(1);
const auto& beta = Input(2);
auto* Y = Output(0, X.sizes(), at::dtype<T>());
CAFFE_ENFORCE_GE(X.dim(), 2, "RMSNorm requires input dim >= 2.");
const int canonical_axis = X.canonical_axis_index(axis_);
const std::vector<int64_t> rms_dims(
X.sizes().cbegin(), X.sizes().cbegin() + canonical_axis);
auto* rrms = Output(1, rms_dims, at::dtype<T>());
const int64_t M = X.size_to_dim(canonical_axis);
const int64_t N = X.size_from_dim(canonical_axis);
CAFFE_ENFORCE_EQ(gamma.numel(), N);
CAFFE_ENFORCE_EQ(beta.numel(), N);
const T* X_data = X.template data<T>();
const T* gamma_data = gamma.template data<T>();
const T* beta_data = beta.template data<T>();
T* Y_data = Y->template data<T>();
T* rrms_data = rrms->template data<T>();
if (M > 0) {
RowwiseRMSCUDAKernel<T>
<<<M, CAFFE_CUDA_NUM_THREADS, 0, context_.cuda_stream()>>>(
N, static_cast<T>(eps_), X_data, rrms_data);
C10_CUDA_KERNEL_LAUNCH_CHECK();
RMSNormForwardCUDAKernel<T>
<<<M, CAFFE_CUDA_NUM_THREADS, 0, context_.cuda_stream()>>>(
N, X_data, gamma_data, beta_data, rrms_data, Y_data);
C10_CUDA_KERNEL_LAUNCH_CHECK();
}
return true;
}
template <>
template <typename T>
void RMSNormGradientOp<CUDAContext>::RMSNormBackward(
int64_t M,
int64_t N,
const T* dY,
const T* X,
const T* gamma,
const T* rrms,
T* dX) {
ReinitializeTensor(
&c2_, {M}, at::dtype<T>().device(CUDAContext::GetDeviceType()));
T* c2_data = c2_.mutable_data<T>();
ComputeInternalGradientsCUDAKernel<T>
<<<M, CAFFE_CUDA_NUM_THREADS, 0, context_.cuda_stream()>>>(
N, dY, X, gamma, rrms, c2_data);
C10_CUDA_KERNEL_LAUNCH_CHECK();
RMSNormBackwardCUDAKernel<T>
<<<M, CAFFE_CUDA_NUM_THREADS, 0, context_.cuda_stream()>>>(
N, dY, X, gamma, rrms, c2_data, dX);
C10_CUDA_KERNEL_LAUNCH_CHECK();
}
template <>
template <typename T>
void RMSNormGradientOp<CUDAContext>::GammaBetaBackward(
int64_t M,
int64_t N,
const T* dY,
const T* X,
const T* rrms,
T* dgamma,
T* dbeta) {
const int64_t B = math::DivUp<int64_t>(N, CAFFE_CUDA_NUM_THREADS);
GammaBetaBackwardCUDAKernel<T>
<<<B, CAFFE_CUDA_NUM_THREADS, 0, context_.cuda_stream()>>>(
M, N, dY, X, rrms, dgamma, dbeta);
C10_CUDA_KERNEL_LAUNCH_CHECK();
}
REGISTER_CUDA_OPERATOR(RMSNorm, RMSNormOp<CUDAContext>);
REGISTER_CUDA_OPERATOR(RMSNormGradient, RMSNormGradientOp<CUDAContext>);
} // namespace caffe2
|