File: recurrent_network_executor.h

package info (click to toggle)
pytorch 1.13.1%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 139,252 kB
  • sloc: cpp: 1,100,274; python: 706,454; ansic: 83,052; asm: 7,618; java: 3,273; sh: 2,841; javascript: 612; makefile: 323; xml: 269; ruby: 185; yacc: 144; objc: 68; lex: 44
file content (531 lines) | stat: -rw-r--r-- 17,651 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
#ifndef CAFFE2_OPERATORS_RECURRENT_NETWORK_EXECUTOR_H_
#define CAFFE2_OPERATORS_RECURRENT_NETWORK_EXECUTOR_H_

#include "caffe2/core/context.h"
#include "caffe2/core/logging.h"
#include "caffe2/core/operator.h"
#include "caffe2/core/timer.h"
#include "caffe2/operators/rnn/recurrent_network_executor_incl.h"
#include "c10/util/irange.h"

#include <map>
#include <unordered_set>
#include <vector>

namespace caffe2 {

/**
 * RecurrentNetworkExecutor is a specialized runtime for recurrent
 * neural networks (RNNs). It is invoked from the RecurrentNetworkOp
 * and RecurrentNetworkGradientOp.
 *
 * Its main benefit over running each RNN timestep as a separate net
 * is that it can run ops in subsequent timesteps in parallel when possible.
 * For example, multi-layer LSTMs allow for timestep parallelism because
 * next timestep's lower layer can start executing at the same time as
 * the same timestep's upper layer.
 *
 * There are two implementations of the RNN executor: one for CPUs
 * (ThreadedRecurrentNetworkExecutor) and another for GPUs
 * (CUDARecurrentNetworkExecutor).
 */
class RecurrentNetworkExecutorBase {
 protected:
  explicit RecurrentNetworkExecutorBase(
      const NetDef& step_net_def,
      std::map<string, string>& recurrent_input_map,
      std::string timestep_blob)
      : step_net_def_(step_net_def),
        recurrent_input_map_(recurrent_input_map),
        timestep_blob_(timestep_blob) {
    const bool net_def_has_device_option = step_net_def_.has_device_option();
    for (const auto i : c10::irange(step_net_def_.op_size())) {
      if (net_def_has_device_option) {
        // In the case when net def specifies device option, final device option
        // will be equal to merge of operator and net def device options, with
        // preference to settings from the operator.
        DeviceOption option;
        option.CopyFrom(step_net_def_.device_option());
        option.MergeFrom(step_net_def_.op(i).device_option());
        step_net_def_.mutable_op(i)->mutable_device_option()->CopyFrom(option);
      }
      op_deps_.push_back(op_deps(i));
    }
  }

 public:
  virtual ~RecurrentNetworkExecutorBase() {
    if (debug_) {
      if (timestep_ops_.size() > 0) {
        PrintInfo(0);
      }
    }
  }

  virtual bool Run(int T) = 0;

  virtual bool RunBackwards(int T) = 0;

  /**
   * Callers must call EnsureTimestepInitialized before starting execution
   * for each of the relevant timesteps. If timestep was initialized before,
   * this is a no-op. First time this is called the dependencies of the
   * operators in timestep are analyzed, and that incurs higher overhead
   * than subsequent calls.
   */
  void EnsureTimestepInitialized(
      int t,
      Workspace* ws,
      const std::vector<std::unique_ptr<ObserverBase<OperatorBase>>>&
          observers_list) {
    if (timestep_ops_template_.size() == 0) {
      // Firsrt invocation -- compute dependencies
      CalculateInternalDependencies();

      // Label ops based on whether they contain reference to the timestep
      // blob. This is an optimization to avoid string comparisons later.
      for (auto& rnn_op : timestep_ops_template_) {
        rnn_op.has_timestep_blob = false;
        const OperatorDef& op = step_net_def_.op(rnn_op.order);
        for (const auto i : c10::irange(op.input_size())) {
          if (op.input(i) == timestep_blob_) {
            rnn_op.has_timestep_blob = true;
            break;
          }
        }
        CAFFE_ENFORCE(
            !HasOutput(op, timestep_blob_),
            "Timestep cannot be output of an op: ",
            timestep_blob_,
            " op=" + ProtoDebugString(op));
      }
    }

    // Initialize timestep if it is not initialized
    if (timestep_ops_.size() <= t ||
        (timestep_ops_.size() > t && timestep_ops_[t].size() == 0)) {
      // Initialize empty timestep ops vectors for each timestep preceding
      // this.
      for (int j = timestep_ops_.size(); j < t + 1; j++) {
        timestep_ops_.push_back(std::vector<RNNNetOperator>());
        timestep_ops_.back().reserve(timestep_ops_template_.size());
      }

      // Keep track of workspaces for optimization in forward-only case
      if (workspaces_.size() < t + 1) {
        workspaces_.resize(t + 1);
      }
      workspaces_[t] = ws;

      // Create a specific timestep blob for this timestep. This is to
      // avoid conflicting timestep blobs when reusing workspaces, as with
      // the forward-only mode.
      std::string this_timestep_blob =
          timestep_blob_ + "_rnnexec_t" + c10::to_string(t);
      BlobGetMutableTensor(ws->CreateBlob(this_timestep_blob), CPU)->Resize(1);
      auto b = ws->GetBlob(this_timestep_blob);
      CAFFE_ENFORCE(b);
      BlobGetMutableTensor(b, CPU)->template mutable_data<int32_t>()[0] = t;

      // Copy the operators from template
      for (auto& template_rnn_op : timestep_ops_template_) {
        auto& rnn_op = template_rnn_op;

        // For ops that have the timestep blob as an input we need to
        // create a new operator definition with the timestep-specific
        // timestep blob. This is required to avoid race conditions when
        // multiple timesteps execute in paralle.
        if (rnn_op.has_timestep_blob) {
          OperatorDef op_copy = step_net_def_.op(rnn_op.order);

          for (const auto i : c10::irange(op_copy.input_size())) {
            if (op_copy.input(i) == timestep_blob_) {
              op_copy.set_input(i, this_timestep_blob);
            }
          }

          rnn_op.op = CreateOperator(op_copy, ws);
          for (const auto& observer : observers_list) {
            std::unique_ptr<ObserverBase<OperatorBase>> rnn_observer_copy =
                observer.get()->rnnCopy(rnn_op.op.get(), rnn_op.order);
            if (rnn_observer_copy) {
              rnn_op.op->AttachObserver(std::move(rnn_observer_copy));
            }
          }
        } else {
          // Optimization for forward-only models when we can share workspaces
          // with timesteps: then we can just copy the op reference.
          if (t > max_parallel_timesteps_ && max_parallel_timesteps_ > 0 &&
              workspaces_[t - max_parallel_timesteps_] == ws) {
            rnn_op.op =
                timestep_ops_[t - max_parallel_timesteps_][rnn_op.order].op;
          } else {
            // Otherwise, we need to create a brand new op with the workspace
            // owned by this timestep.
            rnn_op.op = CreateOperator(step_net_def_.op(rnn_op.order), ws);
            for (const auto& observer : observers_list) {
              std::unique_ptr<ObserverBase<OperatorBase>> rnn_observer_copy =
                  observer.get()->rnnCopy(rnn_op.op.get(), rnn_op.order);
              if (rnn_observer_copy) {
                rnn_op.op->AttachObserver(std::move(rnn_observer_copy));
              }
            }
          }
        }
        rnn_op.op->DisableEvent();

        timestep_ops_[t].emplace_back(rnn_op);
      }
    }
  }

  /**
   * Set limit for the number of timesteps that run in parallel. Useful
   * for forward-only execution when we rotate workspaces over timesteps,
   * i.e when timestep[t] and timestep[t + p] have same workspace.
   */
  void SetMaxParallelTimesteps(int p) {
    max_parallel_timesteps_ = p;
  }

  size_t NumObserversStepNet() {
    size_t num = 0;
    for (auto& ops_at_timestep_t : timestep_ops_) {
      for (auto& rnn_op : ops_at_timestep_t) {
        num += rnn_op.op->NumObservers();
      }
    }
    return num;
  }

 private:
  // Utility method to check if any of the op inputs or control inputs
  // contain given blob 'input'
  bool has_input(std::string x, int opidx) {
    for (auto& inp : step_net_def_.op(opidx).input()) {
      if (inp == x) {
        return true;
      }
    }
    for (auto& inp : step_net_def_.op(opidx).control_input()) {
      if (inp == x) {
        return true;
      }
    }
    return false;
  }

  // Return all outbound dependencies of an op. Special case for
  // rnn dependencies, that are set in recurent_network_op.
  std::vector<string> op_deps(int i) {
    std::vector<string> outs;
    auto& opdef = step_net_def_.op(i);
    for (string o : opdef.output()) {
      outs.push_back(o);
    };
    for (auto& arg : opdef.arg()) {
      if (arg.name().find("rnn_dependency") == 0) {
        outs.push_back(arg.s());
      }
    }
    return outs;
  }

  /**
   * Calculate dependencies of this op, for the ops following it in this
   * timestep and also for the next timestep. Removes redundant dependencies.
   */
  void infer_dependencies(
      int start_i,
      std::unordered_set<string> outputs,
      std::vector<RNNNetOperator>& rnn_ops,
      std::unordered_set<int>* dep_ops) {
    std::unordered_set<int> already_accounted_deps;
    int num_ops = step_net_def_.op_size();
    bool ignore_links = this->ignoreLinkDependencies();
    for (int j = 0; j < num_ops - 1 && !outputs.empty(); j++) {
      int i = (start_i + j) % num_ops;
      if (ignore_links && rnn_ops[i].link_op) {
        continue;
      }
      for (auto& outp : outputs) {
        if (has_input(outp, i)) {
          if (already_accounted_deps.find(i) == already_accounted_deps.end()) {
            dep_ops->insert(i);
          }

          // Now we can take the deps of this ops and not
          // add them anymore
          for (int odep : rnn_ops[i].dependencies) {
            already_accounted_deps.insert(odep);
          }
          for (string& dep_out : op_deps_[i]) {
            auto oit = outputs.find(dep_out);
            if (oit != outputs.end()) {
              // This op produces output of the original op, so the dependency
              // passed through that op
              outputs.erase(oit);
            }
          }
          break;
        }
      }
    }
  }

  /**
   * Add dependencies to ops in the next timestep that would write an op
   * that this op has as an input or output. This is special for RNNs,
   * since we can have ops running in different timesteps concurrently.
   * Also, we need to check ops that output a blob that is input of
   * of the op in question.
   */
  void add_race_conflict_dependencies(
      int opidx,
      std::vector<RNNNetOperator>& rnn_ops,
      std::unordered_set<int>* dep_ops) {
    for (const auto i : c10::irange(rnn_ops.size())) {
      if (i == opidx) {
        continue;
      }
      if (rnn_ops[i].link_op && this->ignoreLinkDependencies()) {
        continue;
      }
      for (auto& dep_blob : op_deps_[i]) {
        for (auto& inp : step_net_def_.op(opidx).input()) {
          if (inp == dep_blob) {
            dep_ops->insert(i);
            break;
          }
        }
        if (i < opidx) {
          for (auto& outp : step_net_def_.op(opidx).output()) {
            if (outp == dep_blob) {
              dep_ops->insert(i);
              break;
            }
          }
        }
      }
    }
  }

  /**
   * Calculate the dependencies between ops inside timestep and across
   * timestep. These are store in timestep_ops_ vector that is copied
   * for each timestep.
   */
  void CalculateInternalDependencies() {
    for (const auto i : c10::irange(step_net_def_.op_size())) {
      timestep_ops_template_.push_back(RNNNetOperator(step_net_def_.op(i), i));
    }
    // Then see which outputs appear as inputs, and those are
    // the internal blobs.
    for (auto& rnn_op : timestep_ops_template_) {
      std::unordered_set<string> dep_outputs;
      for (auto& outp : op_deps_[rnn_op.order]) {
        dep_outputs.insert(outp);
      }

      // Add recurrent dependencies as 'outputs' for this op
      for (auto& outp : dep_outputs) {
        auto rit = recurrent_input_map_.find(outp);
        if (rit != recurrent_input_map_.end()) {
          dep_outputs.insert(rit->second);
        } else {
          dep_outputs.insert(outp);
        }
      }

      // Compute dependencies of this op.
      if (!rnn_op.link_op || !this->ignoreLinkDependencies()) {
        std::unordered_set<int> dependent_ops;
        infer_dependencies(
            rnn_op.order + 1,
            dep_outputs,
            timestep_ops_template_,
            &dependent_ops);

        // Race conditions arise when operator writes a blob that is
        // being read by another.
        if (!this->ignoreLinkDependencies()) {
          add_race_conflict_dependencies(
            rnn_op.order, timestep_ops_template_, &dependent_ops);
        }

        for (int i : dependent_ops) {
          rnn_op.dependencies.push_back(i);
        }

        // Sort in ascending order of dependency distance. If op
        // j > i, then distance is j - i. But if j < i, then distance
        // from i to j passes the timestep boundary and is j + num ops - i.
        std::sort(
            rnn_op.dependencies.begin(),
            rnn_op.dependencies.end(),
            [&](const int& a, const int& b) {
              if (a < rnn_op.order && b < rnn_op.order) {
                return a < b;
              }
              if (a >= rnn_op.order && b >= rnn_op.order) {
                return a < b;
              }
              if (a >= rnn_op.order && b < rnn_op.order) {
                return true;
              }
              return false;
            });
      }
    }

    // Update dependency counts
    for (auto& rnn_op : timestep_ops_template_) {
      for (int i : rnn_op.dependencies) {
        timestep_ops_template_[i].num_dynamic_inputs++;

        if (i > rnn_op.order) {
          timestep_ops_template_[i].frontier = false;
        } else {
          timestep_ops_template_[i].num_recurrent_inputs++;
        }
      }
    }
    // Find ops that have no recurrent inputs, and bind them
    // to the last op of the timestep. If there is only one op
    // in the step net, then it will depend on itself. Note that
    // we do not increase the dynamic input counter.
    for (auto& rnn_op : timestep_ops_template_) {
      if (rnn_op.num_dynamic_inputs == 0 && rnn_op.num_recurrent_inputs == 0) {
        if (rnn_op.link_op && this->ignoreLinkDependencies()) {
          continue;
        }
        timestep_ops_template_.back().dependencies.push_back(rnn_op.order);
      }
    }

    // compute parents
    for (auto& rnn_op : timestep_ops_template_) {
      for (int dep : rnn_op.dependencies) {
        timestep_ops_template_[dep].parents.push_back(rnn_op.order);
      }
    }
    AnalyzeOps();
  }

 protected:
  /**
   * For debug purposes, print the dependency structure. Set
   * rnn_executor_debug=1 in the RecurrentNetworkOp to enable.
   */
  void PrintInfo(int t) {
    auto& rnn_ops = timestep_ops_[t];

    LOG(INFO) << "Timestep: " << t;
    for (auto& rnn_op : rnn_ops) {
      auto& op = rnn_op.op;
      LOG(INFO) << "Operator " << rnn_op.order << ": " << op->type()
                << " dep inputs:" << rnn_op.num_dynamic_inputs
                << " rec inputs:" << rnn_op.num_recurrent_inputs
                << " frontier: " << rnn_op.frontier;
      for (auto& inp : rnn_op.op->debug_def().input()) {
        LOG(INFO) << " ---- input: " << inp;
      }
      for (auto& outp : rnn_op.op->debug_def().output()) {
        LOG(INFO) << " ---- output: " << outp;
      }
      for (auto j : rnn_op.dependencies) {
        LOG(INFO) << " dep: " << j << ": " << rnn_ops[j].op->type();
      }
      for (auto j : rnn_op.parents) {
        LOG(INFO) << " parent: " << j << ": " << rnn_ops[j].op->type();
      }
    }

    LOG(INFO) << "recurrent_inputs:" << recurrent_input_map_;

    for (auto& rnn_op : rnn_ops) {
      LOG(INFO) << "Operator " << rnn_op.order;
      LOG(INFO) << ProtoDebugString(rnn_op.op->debug_def());
    }
  }

  virtual void AnalyzeOps() {}

  virtual bool ignoreLinkDependencies() = 0;

  std::vector<std::vector<RNNNetOperator>> timestep_ops_;
  std::vector<OperatorBase*> op_ptrs_;

  std::vector<RNNNetOperator> timestep_ops_template_;

  NetDef step_net_def_;
  std::vector<std::vector<string>> op_deps_;
  std::vector<Workspace*> workspaces_;
  std::map<string, string> recurrent_input_map_;
  std::string timestep_blob_;

  int max_parallel_timesteps_ = -1;

 public:
  bool debug_ = false;
};

template <class Context>
std::unique_ptr<RecurrentNetworkExecutorBase> createRNNExecutor(
    const NetDef& step_net_def,
    std::map<string, string>& recurrent_input_map,
    std::string timestep_blob,
    ArgumentHelper rnn_args);

class TORCH_API ThreadedRecurrentNetworkExecutor : public RecurrentNetworkExecutorBase {
 public:
  ThreadedRecurrentNetworkExecutor(
      const NetDef& step_net_def,
      std::map<string, string>& recurrent_input_map,
      std::string timestep_blob)
      : RecurrentNetworkExecutorBase(step_net_def, recurrent_input_map, timestep_blob),
        failed_(false) {}

  ~ThreadedRecurrentNetworkExecutor() {
    task_queue_.NoMoreJobs();
    VLOG(1) << "Joining workers.";
    for (auto& worker : workers_) {
      worker.join();
    }
  }

  bool Run(int T) override;

  bool RunBackwards(int T) override;

  bool ignoreLinkDependencies() override {
    return false;
  }

  void setNumThreads(int n) {
    num_threads_ = n;
  }

 private:
  void _ExecRange(int from, int to);

  void _Exec();

  void WorkerFunction();

  void RunOp(OpTask job, int thread_id);

  SimpleQueue<OpTask> task_queue_;
  std::atomic<int> countdown_;
  std::atomic<bool> failed_;
  std::atomic<int> finished_timesteps_;
  int num_ops_;
  std::mutex countdown_mtx_;
  std::condition_variable cv_;
  std::vector<std::thread> workers_;
  int num_threads_ = 4;
};

} // namespace caffe2

#endif // CAFFE2_OPERATORS_RECURRENT_NETWORK_EXECUTOR_H_