1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262
|
#include "caffe2/operators/rnn/recurrent_network_op.h"
#include "caffe2/core/workspace.h"
#include "caffe2/utils/proto_utils.h"
#ifndef CAFFE2_RNN_NO_TEXT_FORMAT
#endif
C10_DEFINE_bool(
caffe2_rnn_executor,
true,
"If set, uses special RNN executor for executing RecurrentNetworkOp");
namespace caffe2 {
CAFFE_KNOWN_TYPE(detail::ScratchWorkspaces);
REGISTER_CPU_OPERATOR(RecurrentNetwork, RecurrentNetworkOp<CPUContext>);
OPERATOR_SCHEMA(RecurrentNetwork)
.NumInputs(1, INT_MAX)
.NumOutputs(2, INT_MAX)
.SetDoc(R"DOC(
Run the input network in a recurrent fashion. This can be used to
implement fairly general recurrent neural networks (RNNs).
The operator proceeds as follows.
- First, initialized the states from the input recurrent states
- For each timestep T, apply the links (that map offsets from input/output
tensors into the inputs/outputs for the `step` network)
- Finally, alias the recurrent states to the specified output blobs.
This is a fairly special-case meta-operator, and so the implementation
is somewhat complex. It trades of generality (and frankly usability)
against performance and control (compared to e.g. TF
dynamic_rnn, Theano scan, etc).
See the usage examples for a flavor of how to use it.
)DOC");
REGISTER_CPU_OPERATOR(
RecurrentNetworkGradient,
RecurrentNetworkGradientOp<CPUContext>);
OPERATOR_SCHEMA(RecurrentNetworkGradient);
REGISTER_CPU_OPERATOR(
rnn_internal_accumulate_gradient_input,
AccumulateInputGradientOp<CPUContext>);
OPERATOR_SCHEMA(rnn_internal_accumulate_gradient_input)
.NumInputs(3)
.NumOutputs(1, INT_MAX)
.EnforceInplace({{2, 0}})
.Private()
.SetDoc(R"DOC(
Internal RNN operator.
)DOC");
REGISTER_CPU_OPERATOR(
rnn_internal_apply_link,
RNNApplyLinkOp<CPUContext>);
OPERATOR_SCHEMA(rnn_internal_apply_link)
.NumInputs(2)
.NumOutputs(2)
.EnforceInplace({{1, 1}})
.Private()
.SetDoc(R"DOC(
Internal RNN operator.
)DOC");
struct GetRecurrentNetworkGradient : public GradientMakerBase {
using GradientMakerBase::GradientMakerBase;
std::vector<OperatorDef> GetGradientDefs() override {
ArgumentHelper argsHelper(def_);
auto params = argsHelper.GetRepeatedArgument<int32_t>("param");
auto recurrentInputs =
argsHelper.GetRepeatedArgument<int32_t>("initial_recurrent_state_ids");
std::vector<std::string> gradientInputs;
// Argument specifies which outputs have external gradient, (0) by default
auto outputs_with_grads =
argsHelper.GetRepeatedArgument<int32_t>("outputs_with_grads");
CAFFE_ENFORCE(outputs_with_grads.size() > 0);
for (auto id : outputs_with_grads) {
// NOLINTNEXTLINE(performance-inefficient-vector-operation)
gradientInputs.push_back(GO(id));
}
// All inputs and outputs are passed back
for (int i = 0; i < def_.input_size(); ++i) {
gradientInputs.push_back(I(i));
}
for (int i = 0; i < def_.output_size(); ++i) {
gradientInputs.push_back(O(i));
}
// We calculate gradients only for parameters and recurrent inputs
std::vector<std::string> gradientOutputs;
gradientOutputs.push_back(GI(0));
for (auto id : params) {
gradientOutputs.push_back(GI(id));
}
for (auto id : recurrentInputs) {
gradientOutputs.push_back(GI(id));
}
VLOG(1) << "Gradient blobs: " << c10::Join(", ", gradientOutputs);
return SingleGradientDef(
"RecurrentNetworkGradient", "", gradientInputs, gradientOutputs);
}
};
REGISTER_GRADIENT(RecurrentNetwork, GetRecurrentNetworkGradient);
namespace detail {
std::map<string, string> GetRecurrentMapping(
const std::vector<detail::Link>& links,
bool backward) {
std::map<string, string> mappings;
for (auto it = links.begin(); it != links.end(); ++it) {
const auto& l1 = *it;
// In backward op we expect to see offset 1 before offset 0 and
// vice versa.
const int offset_l1 = backward ? 1 : 0;
const int offset_l2 = 1 - offset_l1;
if (l1.offset == offset_l1) {
// Find offset = 1 from links. We could probaby rely on order, but
// since the number of links is links small, O(n^2) algo is ok
for (auto it2 = it + 1; it2 != links.end(); ++it2) {
const auto& l2 = *it2;
if (l2.offset == offset_l2 && l2.external == l1.external) {
mappings[l2.internal] = l1.internal;
break;
}
}
}
}
return mappings;
}
void PrependOps(std::vector<OperatorDef> ops, NetDef* netdef) {
for (auto& o : netdef->op()) {
ops.push_back(o);
}
netdef->mutable_op()->Clear();
for (auto& o : ops) {
auto* ao = netdef->add_op();
ao->CopyFrom(o);
}
}
void AddApplyLinkOps(
const vector<Link>& links,
std::string timestep,
const DeviceOption& device_option,
NetDef* netdef) {
std::vector<OperatorDef> ops;
for (auto& link : links) {
OperatorDef opdef;
opdef.set_type("rnn_internal_apply_link");
opdef.add_input(timestep);
opdef.add_input(link.external);
opdef.add_output(link.internal);
opdef.add_output(link.external);
opdef.mutable_device_option()->CopyFrom(device_option);
Argument* offset_arg = opdef.add_arg();
offset_arg->set_name("offset");
offset_arg->set_i(link.offset);
Argument* window_arg = opdef.add_arg();
window_arg->set_name("window");
window_arg->set_i(link.window);
// Find out if the linked blob is used first as an output: then we need
// to add control_input to that op
for (auto& op : *netdef->mutable_op()) {
if (HasInput(op, link.internal)) {
// First appears as an input, no need to do antyhing
continue;
}
if (HasOutput(op, link.internal)) {
op.add_control_input(link.internal);
break;
}
}
ops.push_back(opdef);
netdef->add_external_input(link.internal);
netdef->add_external_input(link.external);
}
detail::PrependOps(ops, netdef);
}
void extractLinks(
OperatorBase* op,
const std::string& internalArg,
const std::string& externalArg,
const std::string& offsetArg,
const std::string& windowArg,
std::vector<detail::Link>* links) {
const auto& internal = op->GetRepeatedArgument<std::string>(internalArg);
const auto& external = op->GetRepeatedArgument<std::string>(externalArg);
const auto& offset = op->GetRepeatedArgument<int32_t>(offsetArg);
const auto& window = op->GetRepeatedArgument<int32_t>(
windowArg, vector<int32_t>(offset.size(), 1));
CAFFE_ENFORCE_EQ(
internal.size(),
offset.size(),
"internal/offset mismatch: ",
internalArg,
" ",
externalArg);
CAFFE_ENFORCE_EQ(
external.size(),
offset.size(),
"external/offset mismatch: ",
externalArg,
" ",
offsetArg);
CAFFE_ENFORCE_EQ(
external.size(),
window.size(),
"external/window mismatch: ",
externalArg,
" ",
windowArg);
// NOLINTNEXTLINE(clang-diagnostic-sign-compare)
for (auto i = 0; i < internal.size(); ++i) {
detail::Link l;
l.internal = internal[i];
l.external = external[i];
l.offset = offset[i];
l.window = window[i];
links->push_back(l);
}
}
NetDef extractNetDef(const OperatorDef& op, const std::string& argName) {
if (ArgumentHelper::HasSingleArgumentOfType<OperatorDef, NetDef>(
op, argName)) {
return ArgumentHelper::GetSingleArgument<OperatorDef, NetDef>(
op, argName, NetDef());
} else {
#ifndef CAFFE2_RNN_NO_TEXT_FORMAT
NetDef result;
const auto netString =
ArgumentHelper::GetSingleArgument<OperatorDef, string>(op, argName, "");
CAFFE_ENFORCE(
TextFormat::ParseFromString(netString, &result),
"Invalid NetDef");
return result;
#else
CAFFE_THROW("No valid NetDef for argument ", argName);
#endif
}
}
} // namespace detail
}
|