1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947
|
#ifndef CAFFE2_OPERATORS_RECURRENT_NETWORK_OP_H_
#define CAFFE2_OPERATORS_RECURRENT_NETWORK_OP_H_
#include "caffe2/core/context.h"
#include "caffe2/core/logging.h"
#include "caffe2/core/operator.h"
#include "caffe2/core/tensor.h"
#include "caffe2/operators/rnn/recurrent_network_executor.h"
#include "caffe2/utils/conversions.h"
#include "caffe2/utils/math.h"
#include "c10/util/irange.h"
C10_DECLARE_bool(caffe2_rnn_executor);
namespace caffe2 {
namespace detail {
struct Param {
std::string param;
std::string grad;
std::string cellGradient;
};
struct RecurrentInput {
std::string state;
std::string input;
};
struct RecurrentGradient {
std::string param;
std::string grad;
std::string externalGrad;
std::string lastExternalGrad;
int32_t offset;
};
struct OffsetAlias {
std::string src;
std::string dst;
int32_t offset{0};
};
struct Link {
std::string internal;
std::string external;
int32_t offset{0};
int32_t window{1};
};
struct TORCH_API ScratchWorkspaces {
std::vector<std::shared_ptr<Workspace>> stepWorkspaces;
std::shared_ptr<Workspace> sharedBlobsWs = nullptr;
};
inline void UpdateTimestepBlob(Workspace* ws, std::string blob_name, int t) {
BlobGetMutableTensor(ws->CreateBlob(blob_name), CPU)->Resize(1);
auto timestepBlob = ws->GetBlob(blob_name);
CAFFE_ENFORCE(timestepBlob);
BlobGetMutableTensor(timestepBlob, CPU)->template mutable_data<int32_t>()[0] =
t;
}
TORCH_API std::map<string, string> GetRecurrentMapping(
const std::vector<detail::Link>& links,
bool backward);
template <typename T, typename Context>
void applyOffsetAlias(
const OffsetAlias& oc,
Workspace* ws,
Context* /*context*/) {
VLOG(1) << "Aliasing: " << oc.src << " to: " << oc.dst
<< " at offset: " << oc.offset;
auto srcBlob = ws->GetBlob(oc.src);
CAFFE_ENFORCE(srcBlob);
auto* src = BlobGetMutableTensor(srcBlob, Context::GetDeviceType());
auto* dst =
BlobGetMutableTensor(ws->GetBlob(oc.dst), Context::GetDeviceType());
auto timestep = src->numel() / src->size(0);
auto dims = src->sizes().vec();
const int32_t startDstTimestep =
oc.offset >= 0 ? oc.offset : src->size(0) + oc.offset;
const int32_t numDstTimesteps = src->size(0) - startDstTimestep;
if (numDstTimesteps >= 1) {
dims[0] = numDstTimesteps;
dst->Resize(dims);
CAFFE_ENFORCE(timestep == dst->numel() / numDstTimesteps, "Invalid offset");
dst->ShareExternalPointer(
src->template mutable_data<T>() + startDstTimestep * timestep);
} else {
CAFFE_ENFORCE_EQ(
numDstTimesteps, 0, "Invalid number of timesteps: ", numDstTimesteps);
dims[0] = 0;
dst->Resize(dims);
dst->template mutable_data<T>();
}
}
template <typename T, class Context>
void repeatCopy(
size_t repeat_n,
size_t n,
const T* src,
T* dst,
Context* context) {
for (const auto i : c10::irange(repeat_n)) {
context->template CopySameDevice<T>(n, src, dst + i * n);
}
}
/**
* Copy external input to the step net into the first item of
* (T + 1) X batch_size X input_size tensor
*/
template <typename T, typename Context>
void initializeRecurrentInput(
const RecurrentInput& rc,
int32_t seqLen,
int32_t batchSize,
Workspace* ws,
Context* context) {
auto stateBlob = ws->GetBlob(rc.state);
CAFFE_ENFORCE(stateBlob);
auto* state = BlobGetMutableTensor(stateBlob, Context::GetDeviceType());
auto inputBlob = ws->GetBlob(rc.input);
CAFFE_ENFORCE(inputBlob);
const auto& input = inputBlob->template Get<Tensor>();
CAFFE_ENFORCE_GE(input.dim(), 1, rc.input);
CAFFE_ENFORCE_LE(input.dim(), 3, rc.input);
const auto stateSize = input.size(input.dim() - 1);
// Sometimes we want to provide more than one initial step.
// For example, if we do a convolution op in step net
// and need a sufficient left padding around the input.
// This could be used together with links where window != 1.
auto initialStateLength = 1;
if (input.dim() == 3) {
initialStateLength = input.size(0);
}
// States at [0, ..., (T + initialStateLength - 1)] (inclusive)
state->Resize(seqLen + initialStateLength, batchSize, stateSize);
if (input.dim() >= 2) {
CAFFE_ENFORCE_EQ(input.size(input.dim() - 2), batchSize, rc.input);
context->template CopySameDevice<T>(
batchSize * stateSize * initialStateLength,
input.template data<T>(),
state->template mutable_data<T>());
} else {
// Usually, the initial state is the same for all inputs in the batch.
// So the op conveniently accepts 1-D input and copies it batchSize times.
repeatCopy<T, Context>(
batchSize,
stateSize,
input.template data<T>(),
state->template mutable_data<T>(),
context);
}
}
TORCH_API void PrependOps(std::vector<OperatorDef> ops, NetDef* netdef);
TORCH_API void AddApplyLinkOps(
const vector<Link>& links,
std::string timestep,
const DeviceOption& device_option,
NetDef* netdef);
TORCH_API void extractLinks(
OperatorBase* op,
const std::string& internalArg,
const std::string& externalArg,
const std::string& offsetArg,
const std::string& windowArg,
std::vector<detail::Link>* links);
TORCH_API NetDef
extractNetDef(const OperatorDef& op, const std::string& argName);
} // namespace detail
template <class Context>
class RecurrentNetworkOp final : public Operator<Context> {
public:
USE_OPERATOR_CONTEXT_FUNCTIONS;
explicit RecurrentNetworkOp(const OperatorDef& operator_def, Workspace* ws)
: Operator<Context>(operator_def, ws),
sharedWs_(ws),
enable_rnn_executor_(this->template GetSingleArgument<bool>(
"enable_rnn_executor",
false)),
timestep_(this->template GetSingleArgument<std::string>(
"timestep",
"timestep")),
operator_def_(operator_def) {
CAFFE_ENFORCE(ws);
stepNetDef_ = detail::extractNetDef(operator_def, "step_net");
recurrentInputs_ = constructRecurrentInputs(operator_def, sharedWs_);
links_ = constructLinks();
aliases_ = constructAliases();
stepNetDef_.add_external_input(timestep_);
detail::AddApplyLinkOps(
links_, timestep_, operator_def.device_option(), &stepNetDef_);
if (FLAGS_caffe2_rnn_executor && enable_rnn_executor_) {
InitializeExecutor(operator_def);
}
}
size_t NumObservers() override {
size_t num = this->observers_list_.size();
if (rnnExecutor_) {
num += rnnExecutor_->NumObserversStepNet();
}
return num;
}
std::vector<detail::RecurrentInput> constructRecurrentInputs(
const OperatorDef& operator_def,
Workspace* sharedWs) {
const auto states =
this->template GetRepeatedArgument<std::string>("recurrent_states");
const auto inputs =
this->template GetRepeatedArgument<int>("initial_recurrent_state_ids");
CAFFE_ENFORCE_EQ(states.size(), inputs.size(), "states/inputs mismatch");
std::vector<detail::RecurrentInput> ris;
for (const auto i : c10::irange(states.size())) {
// States need to be "global" (since they are shared between
// forward and backward).
sharedWs->CreateBlob(states[i]);
detail::RecurrentInput ri;
ri.state = states[i];
ri.input = operator_def.input(inputs[i]);
ris.push_back(ri);
}
return ris;
}
std::vector<detail::OffsetAlias> constructAliases() {
const auto& src =
this->template GetRepeatedArgument<std::string>("alias_src");
const auto& dst =
this->template GetRepeatedArgument<std::string>("alias_dst");
const auto& offset =
this->template GetRepeatedArgument<int32_t>("alias_offset");
CAFFE_ENFORCE(
src.size() == offset.size(), "alias_src/alias_offset mismatch");
CAFFE_ENFORCE(
dst.size() == offset.size(), "alias_dst/alias_offset mismatch");
std::vector<detail::OffsetAlias> aliases;
for (const auto i : c10::irange(src.size())) {
detail::OffsetAlias oc;
oc.src = src[i];
oc.dst = dst[i];
oc.offset = offset[i];
aliases.push_back(oc);
}
return aliases;
}
/**
* Some blobs can be marked as to be recomputed on backward pass.
* For those blobs, we do not want to allocate on each step workspace,
* but we instead store that blob in the shared workspace so all
* steps can use the same buffer on forward pass.
*/
void initializeBlobsToRecomputeOnBackward(Workspace* sharedBlobsWs) {
std::vector<std::string> v;
const auto& blobs = this->template GetRepeatedArgument<std::string>(
"recompute_blobs_on_backward", v);
for (const auto& b : blobs) {
// Note: if the blob already was created, this is a no-op.
sharedBlobsWs->CreateBlob(b);
}
}
std::vector<detail::Link> constructLinks() {
std::vector<detail::Link> links;
detail::extractLinks(
this,
"link_internal",
"link_external",
"link_offset",
"link_window",
&links);
return links;
}
template<typename T>
bool DoRunWithType() {
const auto seqLen = Input(0).dim32(0);
const auto batchSize = Input(0).dim32(1);
for (const auto& ri : recurrentInputs_) {
detail::initializeRecurrentInput<T, Context>(
ri, seqLen, batchSize, sharedWs_, &context_);
}
// If we don't have a backward step net, this operator is forward_only
// and we can avoid creating multiple workspaces.
bool has_backward_pass =
this->template HasSingleArgumentOfType<NetDef>("backward_step_net") ||
(this->template HasSingleArgumentOfType<string>("backward_step_net") &&
this->template GetSingleArgument<string>("backward_step_net", "") !=
"");
// With backward pass: we need to create workspace for each timestep
detail::ScratchWorkspaces* scratch =
OperatorBase::Output<detail::ScratchWorkspaces>(OutputSize() - 1);
std::vector<std::shared_ptr<Workspace>>& stepWorkspaces =
scratch->stepWorkspaces;
std::shared_ptr<Workspace>& sharedBlobsWs = scratch->sharedBlobsWs;
if (!sharedBlobsWs) {
sharedBlobsWs = std::make_shared<Workspace>(sharedWs_);
}
// Caller can decide that some of the forward activations
// are recomputed on backward pass. Then those activations do not
// have to be stored in step workspaces but can be shared.
initializeBlobsToRecomputeOnBackward(sharedBlobsWs.get());
// NOLINTNEXTLINE(clang-diagnostic-sign-compare)
if (has_backward_pass && seqLen > stepWorkspaces.size()) {
stepWorkspaces.resize(seqLen);
}
// In forward-only mode, we cycle over workspaces. This limits the amount
// of parallelism over timesteps that the RNNExecutor provides. So with
// RNN executor we use more workspaces to get better perf.
int num_workspaces_on_fwd_only = rnnExecutor_ ? 4 : 2;
num_workspaces_on_fwd_only = this->template GetSingleArgument<int>(
"num_workspaces", num_workspaces_on_fwd_only);
if (!has_backward_pass && stepWorkspaces.size() < num_workspaces_on_fwd_only) {
// Use alternating stepWorkspaces when forward_only=True.
// Note that the step workspaces can be shared by other ops, thus
// we cannot shrink it to 2 if there are more than 2 step workspaces.
stepWorkspaces.resize(num_workspaces_on_fwd_only);
}
for (const auto t : c10::irange(seqLen)) {
auto& currentStepWorkspace =
(has_backward_pass ? stepWorkspaces[t] :
stepWorkspaces[t % num_workspaces_on_fwd_only]);
if (!currentStepWorkspace) {
currentStepWorkspace = std::make_shared<Workspace>(sharedBlobsWs.get());
}
if (rnnExecutor_) {
if (!has_backward_pass) {
// Need to limit timestep parallelism because we cycle over workspaces
rnnExecutor_->SetMaxParallelTimesteps(num_workspaces_on_fwd_only);
}
rnnExecutor_->EnsureTimestepInitialized(
t, currentStepWorkspace.get(), this->observers_list_);
} else {
// Use plain Caffe2 nets
detail::UpdateTimestepBlob(currentStepWorkspace.get(), timestep_, t);
auto* stepNet = currentStepWorkspace->GetNet(stepNetDef_.name());
if (stepNet == nullptr) {
stepNet = currentStepWorkspace->CreateNet(stepNetDef_);
}
CAFFE_ENFORCE(stepNet, "Step Net construction failure");
// Since we have a SimpleNet, there are no races here.
stepNet->RunAsync();
}
}
if (rnnExecutor_) {
try {
rnnExecutor_->Run(seqLen);
} catch (const std::exception& e) {
LOG(ERROR) << "Encountered exception in RNN executor: " << e.what();
InitializeExecutor(operator_def_);
return false;
} catch (...) {
LOG(ERROR) << "Encountered exception in RNN executor: unknown";
InitializeExecutor(operator_def_);
return false;
}
}
for (const auto& alias : aliases_) {
detail::applyOffsetAlias<T, Context>(alias, sharedWs_, &context_);
}
return true;
}
bool RunOnDevice() override {
return DoRunWithType<float>();
}
protected:
NetDef stepNetDef_;
Workspace* sharedWs_;
bool enable_rnn_executor_;
std::unique_ptr<RecurrentNetworkExecutorBase> rnnExecutor_;
std::vector<detail::Link> links_;
std::vector<detail::OffsetAlias> aliases_;
std::vector<detail::RecurrentInput> recurrentInputs_;
std::string timestep_;
OperatorDef operator_def_;
private:
void InitializeExecutor(const OperatorDef& operator_def) {
VLOG(1) << "Use RecurrentNetworkExecutor";
auto recurrent_map =
detail::GetRecurrentMapping(links_, false /* backward */);
rnnExecutor_ = createRNNExecutor<Context>(
stepNetDef_, recurrent_map, timestep_, ArgumentHelper(operator_def));
}
};
template <class Context>
class RecurrentNetworkGradientOp final : public Operator<Context> {
public:
USE_OPERATOR_CONTEXT_FUNCTIONS;
explicit RecurrentNetworkGradientOp(const OperatorDef& operator_def, Workspace* ws)
: Operator<Context>(operator_def, ws),
sharedWs_(ws),
enable_rnn_executor_(this->template GetSingleArgument<bool>(
"enable_rnn_executor",
false)),
timestep_(this->template GetSingleArgument<std::string>(
"timestep",
"timestep")),
gradInputs_(
this->template GetRepeatedArgument<int32_t>("outputs_with_grads")) {
CAFFE_ENFORCE(ws);
stepNetDef_ = detail::extractNetDef(operator_def, "backward_step_net");
links_ = constructLinks();
params_ = constructParams(operator_def);
recurrentGradients_ = constructRecurrentGradients(operator_def);
recurrentInputIds_ = this->template GetRepeatedArgument<int32_t>(
"initial_recurrent_state_ids");
/* Add operators to the backward step net to handle accumulation of
gradients over timesteps
*/
stepNetDef_.add_external_input(timestep_);
AddGradientInputAccumulationOps(operator_def);
detail::AddApplyLinkOps(
links_, timestep_, operator_def.device_option(), &stepNetDef_);
AddParamGradientAccumulationOps(operator_def);
if (FLAGS_caffe2_rnn_executor && enable_rnn_executor_) {
InitializeExecutor(operator_def);
}
}
// Renaming maps (generated by memonger.py)
std::string remappedName(std::string blob_name) {
return this->template GetSingleArgument<std::string>(
blob_name + ".rename", blob_name);
}
detail::Link remappedLink(const detail::Link& link) {
detail::Link renamed_link = link;
renamed_link.internal = remappedName(link.internal);
renamed_link.external = remappedName(link.external);
return renamed_link;
}
void renameOpInputOutput(std::string from_name, std::string to_name) {
for (const auto j : c10::irange(stepNetDef_.op_size())) {
auto* op = stepNetDef_.mutable_op(j);
for (int i = 0; i < op->input_size(); i++) {
if (op->input(i) == from_name) {
op->set_input(i, to_name);
}
}
for (int i = 0; i < op->output_size(); i++) {
if (op->output(i) == from_name) {
op->set_output(i, to_name);
}
}
}
}
std::vector<detail::Param> constructParams(const OperatorDef& operator_def) {
std::vector<detail::Param> params;
const auto& param = this->template GetRepeatedArgument<int32_t>("param");
const auto& param_grads =
this->template GetRepeatedArgument<string>("param_grads");
CAFFE_ENFORCE(
param_grads.empty() || param_grads.size() == param.size(),
param.size(),
" != ",
param_grads.size());
for (const auto i : c10::irange(param.size())) {
detail::Param p;
// Forward inputs come after [outputs_with_grads] gradient inputs
p.param = operator_def.input(param[i] + gradInputs_.size());
// See GetRecurrentNetworkGradient to understand offseting here
p.grad = operator_def.output(i + numSequences_);
std::string grad_blob =
param_grads.empty() ? p.grad : remappedName(param_grads[i]);
p.cellGradient = grad_blob + "_tmpstep";
params.push_back(p);
renameOpInputOutput(grad_blob, p.cellGradient);
}
return params;
}
std::vector<detail::RecurrentGradient> constructRecurrentGradients(
const OperatorDef& operator_def) {
std::vector<detail::RecurrentGradient> rgs;
const auto& recurrent =
this->template GetRepeatedArgument<std::string>("recurrent_states");
const auto& alias_src =
this->template GetRepeatedArgument<std::string>("alias_src");
const auto& offset =
this->template GetRepeatedArgument<int32_t>("alias_offset");
for (const auto i : c10::irange(recurrent.size())) {
detail::RecurrentGradient rg;
rg.param = recurrent[i];
rg.grad = remappedName(recurrent[i] + "_grad");
for (const auto j : c10::irange(alias_src.size())) {
if (alias_src[j] != recurrent[i]) {
continue;
}
int idx = -1;
for (const auto k : c10::irange(gradInputs_.size())) {
if (gradInputs_[k] == j) {
idx = k;
}
}
if (idx == -1) {
continue;
}
CAFFE_ENFORCE(offset[j] == 1 || offset[j] == -1);
if (offset[j] == 1) {
rg.externalGrad = operator_def.input(idx);
} else if (offset[j] == -1) {
rg.lastExternalGrad = operator_def.input(idx);
}
}
rg.offset = 1;
rgs.push_back(rg);
}
return rgs;
}
std::vector<detail::Link> constructLinks() {
std::vector<detail::Link> links;
detail::extractLinks(
this,
"link_internal",
"link_external",
"link_offset",
"link_window",
&links);
detail::extractLinks(
this,
"backward_link_internal",
"backward_link_external",
"backward_link_offset",
"",
&links);
for (const auto i : c10::irange(links.size())) {
links[i] = remappedLink(links[i]);
}
return links;
}
void InitializeExecutor(const OperatorDef& operator_def) {
VLOG(1) << "Use RecurrentNetworkExecutor for backward";
auto recurrent_map = detail::GetRecurrentMapping(links_, true /* backward */);
rnnExecutor_ = createRNNExecutor<Context>(
stepNetDef_, recurrent_map, timestep_, ArgumentHelper(operator_def));
}
void AddGradientInputAccumulationOps(const OperatorDef& operator_def) {
/**
* Add ops to the step net to accumulate input gradients.
*/
std::vector<OperatorDef> ops;
for (const auto& rg : recurrentGradients_) {
if (rg.externalGrad.empty()) {
continue;
}
VLOG(1) << "Accumulating into: " << rg.grad << " from " << rg.externalGrad
<< ", offset: " << rg.offset;
OperatorDef opdef;
opdef.set_type("rnn_internal_accumulate_gradient_input");
opdef.add_input(timestep_);
opdef.add_input(rg.externalGrad);
opdef.add_input(rg.grad);
opdef.add_output(rg.grad);
// Add also the linked blobs to outputs, to ensure correct
// chaining.
for (auto& l : links_) {
if (rg.grad == l.external) {
Argument* dep_arg = opdef.add_arg();
dep_arg->set_name("rnn_dependency." + l.internal);
dep_arg->set_s(l.internal);
}
}
opdef.mutable_device_option()->CopyFrom(operator_def.device_option());
Argument* offset_arg = opdef.add_arg();
offset_arg->set_name("offset");
offset_arg->set_i(rg.offset);
ops.push_back(opdef);
stepNetDef_.add_external_input(rg.externalGrad);
stepNetDef_.add_external_input(rg.grad);
}
detail::PrependOps(ops, &stepNetDef_);
}
void AddParamGradientAccumulationOps(const OperatorDef& operator_def) {
// If a user passes in param_grads mapping, we can copy dirrectly
// form a blob where backward cell net written data to.
// This becomes handy in a case where gradient from the cell net
// is an internal blob of the backward cell. This happens, for example,
// when SumOp is the first op of the cell
for (const auto& param : params_) {
OperatorDef opdef;
opdef.set_type("Sum");
opdef.add_input(param.grad);
opdef.add_input(param.cellGradient);
opdef.add_output(param.grad);
opdef.mutable_device_option()->CopyFrom(operator_def.device_option());
stepNetDef_.add_op()->CopyFrom(opdef);
stepNetDef_.add_external_input(param.grad);
}
}
void CreateSharedBlobs(
const std::shared_ptr<Workspace>& step0Ws,
Workspace* sharedBlobsWs) {
/**
* Create all output blobs created by ops of the backward step net, they
* can be shared.
*/
for (auto& op : stepNetDef_.op()) {
for (const string& outp : op.output()) {
if (!step0Ws->HasBlob(outp)) {
sharedBlobsWs->CreateBlob(outp);
}
}
}
}
template<typename T>
bool DoRunWithType() {
const auto seqLen = Input(gradInputs_.size()).dim32(0);
VLOG(1) << "seqLen: " << seqLen;
const detail::ScratchWorkspaces& scratch =
this->template Input<detail::ScratchWorkspaces>(InputSize() - 1);
const std::vector<std::shared_ptr<Workspace>>& stepWorkspaces =
scratch.stepWorkspaces;
CAFFE_ENFORCE_GE(stepWorkspaces.size(), seqLen);
Workspace& sharedBlobsWs = *scratch.sharedBlobsWs.get();
const auto batchSize = Input(0).dim32(1);
for (auto& param : params_) {
auto pBlob = sharedWs_->GetBlob(param.param);
CAFFE_ENFORCE(pBlob);
const auto& p = pBlob->template Get<Tensor>();
auto gBlob = sharedWs_->GetBlob(param.grad);
CAFFE_ENFORCE(gBlob);
auto* g = BlobGetMutableTensor(gBlob, Context::GetDeviceType());
g->ResizeLike(p);
math::Set<T, Context>(
g->numel(),
convert::To<float, T>(0.0),
g->template mutable_data<T>(),
&context_);
}
for (auto& rg : recurrentGradients_) {
auto pBlob = sharedWs_->GetBlob(rg.param);
CAFFE_ENFORCE(pBlob);
const auto& p = pBlob->template Get<Tensor>();
auto gBlob = sharedWs_->CreateBlob(rg.grad);
CAFFE_ENFORCE(gBlob);
auto* g = BlobGetMutableTensor(gBlob, Context::GetDeviceType());
g->ResizeLike(p);
CAFFE_ENFORCE_EQ(g->dim(), 3);
const auto timestep = g->numel() / g->size(0);
// Fill the last timestep with zeros for the gradient
math::Set<T, Context>(
timestep,
convert::To<float, T>(0.0),
g->template mutable_data<T>() + (g->size(0) - 1) * timestep,
&context_);
}
// This code assumes that there are several inputs
// sequences. Actually it is not supported by the rest of the code,
// and numSequences_ is a constant, equal to 1.
for (const auto i : c10::irange(numSequences_)) {
// Offseting as the first gradInputs_.size() inputs of the op
// are from GO. Then all I(0..N).
const int gradientInputIndex = i + gradInputs_.size();
const auto& inputName = this->debug_def().input(gradientInputIndex);
auto gradientName = remappedName(inputName + "_grad");
VLOG(1) << "Initializing gradient for input " << gradientInputIndex
<< " (" << inputName << ") "
<< " as blob " << gradientName
<< ". Size: " << Input(gradientInputIndex).numel();
auto pGradientBlob = sharedWs_->GetBlob(gradientName);
CAFFE_ENFORCE(pGradientBlob);
auto* g = BlobGetMutableTensor(pGradientBlob, Context::GetDeviceType());
g->ResizeLike(Input(gradientInputIndex));
g->template mutable_data<T>();
}
auto accumulateFinalInputGradients = [&]() {
for (const auto& rg : recurrentGradients_) {
if (rg.lastExternalGrad.empty()) {
continue;
}
VLOG(1) << "Accumulating into: " << rg.grad << " from "
<< rg.lastExternalGrad << " for final time step (sep. blob)";
auto gBlob = sharedWs_->GetBlob(rg.grad);
CAFFE_ENFORCE(gBlob);
auto* g = BlobGetMutableTensor(gBlob, Context::GetDeviceType());
auto oglastBlob = sharedWs_->GetBlob(rg.lastExternalGrad);
CAFFE_ENFORCE(oglastBlob);
const auto& oglast = oglastBlob->template Get<Tensor>();
CAFFE_ENFORCE_EQ(g->size(1), oglast.size(1));
CAFFE_ENFORCE_EQ(g->size(2), oglast.size(2));
const auto t = g->size(0) - 1;
const auto timestep_size = g->numel() / g->size(0);
CAFFE_ENFORCE_EQ(timestep_size, oglast.numel());
T* g_data_with_offset =
g->template mutable_data<T>() + t * timestep_size;
math::Add<T, Context>(
timestep_size,
oglast.template data<T>(),
g_data_with_offset,
g_data_with_offset,
&context_);
}
};
accumulateFinalInputGradients();
// Create shared blobs for blobs that can be shared between
// all timesteps.
if (stepWorkspaces.size() > 0) {
CreateSharedBlobs(stepWorkspaces[0], &sharedBlobsWs);
}
for (int32_t t = seqLen - 1; t >= 0; --t) {
if (rnnExecutor_) {
rnnExecutor_->EnsureTimestepInitialized(
t, stepWorkspaces[t].get(), this->observers_list_);
} else {
auto* stepNet = stepWorkspaces[t].get()->GetNet(stepNetDef_.name());
if (stepNet == nullptr) {
stepNet = stepWorkspaces[t].get()->CreateNet(stepNetDef_);
}
CAFFE_ENFORCE(stepNet);
stepNet->RunAsync();
}
}
if (rnnExecutor_) {
rnnExecutor_->RunBackwards(seqLen);
}
CAFFE_ENFORCE_EQ(recurrentInputIds_.size(), recurrentGradients_.size());
for (const auto i : c10::irange(recurrentInputIds_.size())) {
// See GetRecurrentNetworkGradient to understand offseting here
// Outputs of the gradient are inputs of the forward pass.
// So we need to offset on all inputs that go before recurrent
// initial ones
auto outputIdx = i + params_.size() + numSequences_;
// because first gradInputs_.size() inputs are from GO
int inputId = recurrentInputIds_[i] + gradInputs_.size();
VLOG(1) << "Resetting output " << this->debug_def().output(outputIdx)
<< " like input " << this->debug_def().input(inputId);
Output(outputIdx)->ResizeLike(Input(inputId));
T* output_data = Output(outputIdx)->template mutable_data<T>();
auto pBlob = sharedWs_->GetBlob(recurrentGradients_[i].grad);
CAFFE_ENFORCE(pBlob);
auto* p = BlobGetMutableTensor(pBlob, Context::GetDeviceType());
if (Input(inputId).dim() >= 2) {
// Gradient states blob should live. And if it gets changed by the
// backward pass, then output should be changed as well. Thus it should
// be okay to share data here
Output(outputIdx)->template ShareExternalPointer<T>(
p->template mutable_data<T>());
} else {
// We need to do a bunch of Adds any way. So lets not worry about
// copy / share data here. One way to speed this up could be a kernel
// which sums up several tensors together instead of going 1 by 1
const auto recurrentStateSize = Input(inputId).dim32(0);
math::Set<T, Context>(
recurrentStateSize,
convert::To<float,T>(0.0),
output_data,
&context_);
math::AddStripedBatch<T, Context>(
recurrentStateSize,
p->template data<T>(),
output_data,
recurrentStateSize,
batchSize,
&context_);
}
}
return true;
}
bool RunOnDevice() override {
return DoRunWithType<float>();
}
protected:
NetDef stepNetDef_;
Workspace* sharedWs_;
bool enable_rnn_executor_;
std::unique_ptr<RecurrentNetworkExecutorBase> rnnExecutor_;
std::vector<detail::Link> links_;
std::vector<detail::Param> params_;
std::vector<detail::RecurrentGradient> recurrentGradients_;
std::string timestep_;
// For now we support only one input sequence
const int numSequences_{1};
std::vector<int32_t> recurrentInputIds_;
std::vector<int32_t> gradInputs_;
};
template <class Context>
class AccumulateInputGradientOp : public Operator<Context> {
public:
template <class... Args>
explicit AccumulateInputGradientOp(Args&&... args)
: Operator<Context>(std::forward<Args>(args)...),
offset_(this->template GetSingleArgument<int>("offset", -1)) {
CAFFE_ENFORCE(offset_ >= 0, "Offset not set");
}
USE_OPERATOR_CONTEXT_FUNCTIONS;
template<typename T>
bool DoRunWithType() {
const auto& t0 = this->template Input<Tensor>(0, CPU);
const auto t = t0.template data<int32_t>()[0];
auto& og = Input(1);
auto* g = Output(0);
T* g_data = g->template mutable_data<T>();
const auto timestep_size = g->numel() / g->size(0);
CAFFE_ENFORCE(
(t + offset_) * timestep_size + timestep_size <= g->numel(),
"Accumulation destination address over bounds");
CAFFE_ENFORCE(
t * timestep_size + timestep_size <= og.numel(),
"Accumulation source address out of bounds");
math::Add<T, Context>(
timestep_size,
og.template data<T>() + t * timestep_size,
g_data + (t + offset_) * timestep_size,
g_data + (t + offset_) * timestep_size,
&context_);
return true;
}
bool RunOnDevice() override {
return DispatchHelper<TensorTypes<float>>::call(this, Input(1));
}
private:
int offset_;
};
template <class Context>
class RNNApplyLinkOp : public Operator<Context> {
public:
template <class... Args>
explicit RNNApplyLinkOp(Args&&... args)
: Operator<Context>(std::forward<Args>(args)...),
offset_(this->template GetSingleArgument<int>("offset", -1)),
window_(this->template GetSingleArgument<int>("window", -1)) {
CAFFE_ENFORCE(offset_ >= 0, "offset not set");
CAFFE_ENFORCE(window_ >= 0, "window not set");
}
USE_OPERATOR_CONTEXT_FUNCTIONS;
template <typename T>
bool DoRunWithType() {
// Both internal and external appear as both input and output to enforce
// correct dependency computation.
const auto& t0 = this->template Input<Tensor>(0, CPU);
const auto t = t0.template data<int32_t>()[0];
auto& external = Input(1);
auto* internal_out = Output(0);
auto* external_out = Output(1);
CAFFE_ENFORCE_GT(external.numel(), 0);
const int64_t externalTimestepSize = external.numel() / external.size(0);
auto* externalData = external_out->template mutable_data<T>() +
(t + offset_) * externalTimestepSize;
auto internalDims = external_out->sizes().vec();
internalDims[0] = window_;
internal_out->Resize(internalDims);
internal_out->ShareExternalPointer(
externalData, externalTimestepSize * window_);
return true;
}
bool RunOnDevice() override {
return DoRunWithType<float>();
}
private:
int offset_;
int window_;
};
} // namespace caffe2
#endif // CAFFE2_OPERATORS_RECURRENT_NETWORK_OP_H_
|