1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589
|
#include "caffe2/operators/rnn/recurrent_op_cudnn.h"
#include "caffe2/utils/math.h"
#include <map>
namespace caffe2 {
namespace detail {
template <typename T>
TensorDescriptors<T>::TensorDescriptors(
size_t n,
const std::vector<int>& dim,
const std::vector<int>& stride) {
descs_.resize(n);
CAFFE_ENFORCE_EQ(dim.size(), stride.size());
for (auto i = 0; i < n; ++i) {
CUDNN_ENFORCE(cudnnCreateTensorDescriptor(&descs_[i]));
CUDNN_ENFORCE(cudnnSetTensorNdDescriptor(
descs_[i],
cudnnTypeWrapper<T>::type,
dim.size(),
dim.data(),
stride.data()));
}
}
template <typename T>
TensorDescriptors<T>::~TensorDescriptors() {
for (auto desc : descs_) {
cudnnDestroyTensorDescriptor(desc);
}
}
}
template <typename T>
RecurrentBaseOp<T>::~RecurrentBaseOp() {
CUDNN_ENFORCE(cudnnDestroyDropoutDescriptor(dropoutDesc_));
CUDNN_ENFORCE(cudnnDestroyRNNDescriptor(rnnDesc_));
CUDNN_ENFORCE(cudnnDestroyFilterDescriptor(wDesc_));
CUDNN_ENFORCE(cudnnDestroyTensorDescriptor(hxDesc_));
}
template <typename T>
void RecurrentBaseOp<T>::initialize(
const Tensor& input,
Tensor* dropoutStates,
Tensor* output,
Tensor* hiddenOutput,
Tensor* cellOutput) {
static_assert(sizeof(T) == 4, ""); // workaround clang bug
CAFFE_ENFORCE_GE(input.dim(), 3);
const int seqLength = input.size(0);
const int batchSize = input.size(1);
const int inputDim = input.size(2);
const int hiddenSize = OperatorBase::GetSingleArgument<int>("hidden_size", 0);
CAFFE_ENFORCE_GT(hiddenSize, 0);
const auto bidirectional =
OperatorBase::GetSingleArgument<int>("bidirectional", 0);
CAFFE_ENFORCE(bidirectional == 0 || bidirectional == 1);
const auto numDirections = bidirectional == 1 ? 2 : 1;
const auto outputDim = hiddenSize * numDirections;
const auto rnnDirection =
bidirectional == 1 ? CUDNN_BIDIRECTIONAL : CUDNN_UNIDIRECTIONAL;
const auto numLayers = OperatorBase::GetSingleArgument<int>("num_layers", 0);
CAFFE_ENFORCE_GT(numLayers, 0);
const auto& rnnModeStr =
OperatorBase::GetSingleArgument<string>("rnn_mode", "");
CAFFE_ENFORCE(rnnModeStr == "lstm" || rnnModeStr == "gru");
const auto rnnMode = rnnModeStr == "lstm" ? CUDNN_LSTM : CUDNN_GRU;
const auto& rnnInputStr =
OperatorBase::GetSingleArgument<string>("input_mode", "");
CAFFE_ENFORCE(rnnInputStr == "linear" || rnnInputStr == "skip");
const auto rnnInput =
rnnInputStr == "linear" ? CUDNN_LINEAR_INPUT : CUDNN_SKIP_INPUT;
// Dropout setup
{
if (dropoutStates) {
size_t stateSize;
float dropout_param =
OperatorBase::GetSingleArgument<float>("dropout", 1.0);
if (dropout_param < 1.0) {
CUDNN_ENFORCE(cudnnDropoutGetStatesSize(
cudnn_wrapper_.inline_cudnn_handle(), &stateSize));
dropoutStates->Resize(std::vector<int>{static_cast<int>(
stateSize / 4 /* sizeof(T) - workaround clang bug */)});
CUDNN_ENFORCE(cudnnSetDropoutDescriptor(
dropoutDesc_,
cudnn_wrapper_.inline_cudnn_handle(),
dropout_param,
dropoutStates->template mutable_data<T>(),
stateSize,
OperatorBase::GetSingleArgument<int>("seed", 0)));
}
}
}
// RNN setup
{
#if CUDNN_VERSION_MIN(7, 0, 0)
CUDNN_ENFORCE(cudnnSetRNNDescriptor_v6(
cudnn_wrapper_.inline_cudnn_handle(),
rnnDesc_,
hiddenSize,
numLayers,
dropoutDesc_,
rnnInput,
rnnDirection,
rnnMode,
CUDNN_RNN_ALGO_STANDARD, // TODO: verify correctness / efficiency.
cudnnTypeWrapper<T>::type));
#else
CUDNN_ENFORCE(cudnnSetRNNDescriptor(
rnnDesc_,
hiddenSize,
numLayers,
dropoutDesc_,
rnnInput,
rnnDirection,
rnnMode,
cudnnTypeWrapper<T>::type));
#endif
}
// X setup
{
xDesc_.reset(new detail::TensorDescriptors<T>(
seqLength,
// Third dimension is unused
{batchSize, inputDim, 1},
// Fully-packed
{inputDim, 1, 1}));
}
// Y setup
{
yDesc_.reset(new detail::TensorDescriptors<T>(
seqLength,
// Third dimension is unused
{batchSize, hiddenSize * numDirections, 1},
// Fully-packed
{numDirections * hiddenSize, 1, 1}));
if (output) {
output->Resize(std::vector<int>{seqLength, batchSize, outputDim});
}
}
// Hidden/Cell setup
{
const std::array<int, 3> dim{
numLayers * numDirections, batchSize, hiddenSize};
const std::array<int, 3> stride{batchSize * hiddenSize, hiddenSize, 1};
CUDNN_ENFORCE(cudnnSetTensorNdDescriptor(
hxDesc_, cudnnTypeWrapper<T>::type, 3, dim.data(), stride.data()));
cxDesc_ = hxDesc_;
hyDesc_ = hxDesc_;
cyDesc_ = hxDesc_;
if (hiddenOutput) {
hiddenOutput->Resize(
std::vector<int>{numLayers * numDirections, batchSize, hiddenSize});
}
if (cellOutput) {
cellOutput->Resize(
std::vector<int>{numLayers * numDirections, batchSize, hiddenSize});
}
}
// Weights setup
{
size_t weightsSize;
CUDNN_ENFORCE(cudnnGetRNNParamsSize(
cudnn_wrapper_.inline_cudnn_handle(),
rnnDesc_,
xDesc_->descs()[0],
&weightsSize,
cudnnTypeWrapper<T>::type));
const std::array<int, 3> dims{
static_cast<int>(
weightsSize / 4 /* sizeof(T) - workaround clang bug */),
1,
1};
CUDNN_ENFORCE(cudnnSetFilterNdDescriptor(
wDesc_, cudnnTypeWrapper<T>::type, CUDNN_TENSOR_NCHW, 3, dims.data()));
}
// RNN workspace size
{
CUDNN_ENFORCE(cudnnGetRNNWorkspaceSize(
cudnn_wrapper_.inline_cudnn_handle(),
rnnDesc_,
seqLength,
xDesc_->descs(),
&cudnnWsNbytes_));
}
}
template <typename T>
bool RecurrentOp<T>::RunOnDevice() {
const int seqLength = Input(INPUT).dim32(0);
if (Input(INPUT).sizes() != cachedInputDims_) {
initialize(
Input(INPUT),
Output(DROPOUT_STATES),
Output(OUTPUT),
Output(HIDDEN_OUTPUT),
Output(CELL_OUTPUT));
cachedInputDims_ = Input(INPUT).sizes().vec();
}
// Validation checks
size_t weightsSize;
CUDNN_ENFORCE(cudnnGetRNNParamsSize(
cudnn_wrapper_.inline_cudnn_handle(),
rnnDesc_,
xDesc_->descs()[0],
&weightsSize,
cudnnTypeWrapper<T>::type));
CAFFE_ENFORCE_EQ(Input(WEIGHT).nbytes(), weightsSize);
// Training reserve size
CUDNN_ENFORCE(cudnnGetRNNTrainingReserveSize(
cudnn_wrapper_.inline_cudnn_handle(),
rnnDesc_,
seqLength,
xDesc_->descs(),
&reserveNbytes_));
Output(RNN_SCRATCH)
->Resize(std::vector<int>{static_cast<int>(
reserveNbytes_ / 4)}); // sizeof(T) - workaround clang bug
Output(RNN_SCRATCH)->template mutable_data<T>();
auto InputData = [this](int i) { return this->Input(i).template data<T>(); };
auto OutputData = [this](int i) {
return this->Output(i)->template mutable_data<T>();
};
if (OperatorBase::GetSingleArgument<int>(OpSchema::Arg_IsTest, 0)) {
cudnn_wrapper_.with_cudnn_state(0, [&](CuDNNState* state) {
CUDNN_ENFORCE(cudnnRNNForwardInference(
state->cudnn_handle(),
rnnDesc_,
seqLength,
xDesc_->descs(),
InputData(INPUT), //.template data<T>(),
hxDesc_,
InputData(HIDDEN_INPUT), //.template data<T>(),
cxDesc_,
InputData(CELL_INPUT), //.template data<T>(),
wDesc_,
InputData(WEIGHT), //.template data<T>(),
yDesc_->descs(),
OutputData(OUTPUT), //->template mutable_data<T>(),
hyDesc_,
OutputData(HIDDEN_OUTPUT), //->template mutable_data<T>(),
cyDesc_,
OutputData(CELL_OUTPUT), //->template mutable_data<T>(),
state->workspace().get(cudnnWsNbytes_),
cudnnWsNbytes_));
});
} else {
cudnn_wrapper_.with_cudnn_state(0, [&](CuDNNState* state) {
CUDNN_ENFORCE(cudnnRNNForwardTraining(
state->cudnn_handle(),
rnnDesc_,
seqLength,
xDesc_->descs(),
InputData(INPUT), //.template data<T>(),
hxDesc_,
InputData(HIDDEN_INPUT), //.template data<T>(),
cxDesc_,
InputData(CELL_INPUT), //.template data<T>(),
wDesc_,
InputData(WEIGHT), //.template data<T>(),
yDesc_->descs(),
OutputData(OUTPUT), //->template mutable_data<T>(),
hyDesc_,
OutputData(HIDDEN_OUTPUT), //->template mutable_data<T>(),
cyDesc_,
OutputData(CELL_OUTPUT), //->template mutable_data<T>(),
state->workspace().get(cudnnWsNbytes_),
cudnnWsNbytes_,
OutputData(RNN_SCRATCH), //->template mutable_data<T>(),
reserveNbytes_));
});
}
return true;
}
template <typename T>
bool RecurrentGradientOp<T>::RunOnDevice() {
const int seqLength = Input(INPUT).dim32(0);
if (Input(INPUT).sizes() != cachedInputDims_) {
initialize(Input(INPUT), Output(DROPOUT_STATES));
cachedInputDims_ = Input(INPUT).sizes().vec();
}
CUDNN_ENFORCE(cudnnGetRNNTrainingReserveSize(
cudnn_wrapper_.inline_cudnn_handle(),
rnnDesc_,
seqLength,
xDesc_->descs(),
&reserveNbytes_));
CAFFE_ENFORCE_EQ(reserveNbytes_, Input(RNN_SCRATCH).nbytes());
Output(GRAD_INPUT)->ResizeLike(Input(INPUT));
Output(GRAD_HIDDEN_INPUT)->ResizeLike(Input(HIDDEN_INPUT));
Output(GRAD_CELL_INPUT)->ResizeLike(Input(CELL_INPUT));
Output(GRAD_WEIGHT)->ResizeLike(Input(WEIGHT));
math::Set<T, CUDAContext>(
Output(GRAD_WEIGHT)->numel(),
0.0,
Output(GRAD_WEIGHT)->template mutable_data<T>(),
&context_);
#if CUDNN_VERSION_MIN(6,0,0)
auto * reserve = Output(RNN_SCRATCH_OUT)->template mutable_data<T>();
#else
const auto * reserve = Output(RNN_SCRATCH_OUT)->template data<T>();
#endif
auto InputData = [this](int i) { return this->Input(i).template data<T>(); };
auto OutputData = [this](int i) {
return this->Output(i)->template mutable_data<T>();
};
cudnn_wrapper_.with_cudnn_state(0, [&](CuDNNState* state) {
CUDNN_ENFORCE(cudnnRNNBackwardData(
state->cudnn_handle(),
rnnDesc_,
seqLength,
yDesc_->descs(),
InputData(OUTPUT), // Input(OUTPUT).template data<T>(),
yDesc_->descs(),
InputData(GRAD_OUTPUT), // Input(GRAD_OUTPUT).template data<T>(),
hyDesc_,
// Note: like CNTK, ignore these gradient inputs. t16675365 to
// reconsider.
nullptr,
cyDesc_,
nullptr,
wDesc_,
InputData(WEIGHT), // Input(WEIGHT).template data<T>(),
hxDesc_,
InputData(HIDDEN_INPUT), // Input(HIDDEN_INPUT).template data<T>(),
cxDesc_,
InputData(CELL_INPUT),
xDesc_->descs(),
OutputData(GRAD_INPUT),
hxDesc_,
OutputData(GRAD_HIDDEN_INPUT),
cxDesc_,
OutputData(GRAD_CELL_INPUT),
state->workspace().get(cudnnWsNbytes_),
cudnnWsNbytes_,
reserve,
reserveNbytes_));
CUDNN_ENFORCE(cudnnRNNBackwardWeights(
state->cudnn_handle(),
rnnDesc_,
seqLength,
xDesc_->descs(),
InputData(INPUT), // Input(INPUT).template data<T>(),
hxDesc_,
InputData(HIDDEN_INPUT), // Input(HIDDEN_INPUT).template data<T>(),
yDesc_->descs(),
InputData(OUTPUT), // Input(OUTPUT).template data<T>(),
state->workspace().get(cudnnWsNbytes_),
cudnnWsNbytes_,
wDesc_,
OutputData(
GRAD_WEIGHT), // Output(GRAD_WEIGHT)->template mutable_data<T>(),
reserve,
reserveNbytes_));
});
return true;
}
template <typename T, RecurrentParamOpMode mode>
bool RecurrentParamAccessOp<T, mode>::RunOnDevice() {
initialize(Input(0));
if (mode == SET_PARAM) {
size_t paramsSize;
CUDNN_ENFORCE(cudnnGetRNNParamsSize(
cudnn_wrapper_.inline_cudnn_handle(),
rnnDesc_,
xDesc_->descs()[0],
¶msSize,
cudnnTypeWrapper<T>::type));
CAFFE_ENFORCE_EQ(
paramsSize / 4, Input(1).numel(), "Incorrect weight initialization");
}
int layer = OperatorBase::GetSingleArgument<int>("layer", 0);
std::string param_type =
OperatorBase::GetSingleArgument<string>("param_type", "");
std::string input_type =
OperatorBase::GetSingleArgument<string>("input_type", "");
// Mapping to CUDNN constants
std::map<string, int> weight_constants = {{"input_gate_w", 0},
{"forget_gate_w", 1},
{"cell_w", 2},
{"output_gate_w", 3}};
std::map<string, int> bias_constants = {{"input_gate_b", 0},
{"forget_gate_b", 1},
{"cell_b", 2},
{"output_gate_b", 3}};
if (bias_constants.find(param_type) != bias_constants.end()) {
int param_id = bias_constants[param_type] + 4 * (input_type == "recurrent");
cudnnFilterDescriptor_t biasDesc;
CUDNN_ENFORCE(cudnnCreateFilterDescriptor(&biasDesc));
void* bias;
CUDNN_ENFORCE(cudnnGetRNNLinLayerBiasParams(
cudnn_wrapper_.inline_cudnn_handle(),
rnnDesc_,
layer,
xDesc_->descs()[0],
wDesc_,
Input(1).template data<T>(),
param_id, // Forget gate bias for recurrent input
biasDesc,
&bias));
int numBiasDims;
std::vector<int> biasDims(3);
cudnnDataType_t dt;
cudnnTensorFormat_t tf;
// For some reason, the CuDNN Bias tensor is 3 dimensional
CUDNN_ENFORCE(cudnnGetFilterNdDescriptor(
biasDesc, 3, &dt, &tf, &numBiasDims, biasDims.data()));
CAFFE_ENFORCE_EQ(numBiasDims, 3);
if (mode == SET_PARAM) {
CAFFE_ENFORCE_EQ(
biasDims[0] * biasDims[1] * biasDims[2], Input(2).numel());
this->context_.template CopySameDevice<T>(
biasDims[0] * biasDims[1] * biasDims[2],
Input(2).template data<T>(),
static_cast<T*>(bias));
} else {
Output(0)->Resize(biasDims);
this->context_.template CopySameDevice<T>(
biasDims[0] * biasDims[1] * biasDims[2],
static_cast<T*>(bias),
Output(0)->template mutable_data<T>());
}
} else if (weight_constants.find(param_type) != weight_constants.end()) {
int param_id =
weight_constants[param_type] + 4 * (input_type == "recurrent");
cudnnFilterDescriptor_t matrixParamDesc;
CUDNN_ENFORCE(cudnnCreateFilterDescriptor(&matrixParamDesc));
void* pmatrix;
CUDNN_ENFORCE(cudnnGetRNNLinLayerMatrixParams(
cudnn_wrapper_.inline_cudnn_handle(),
rnnDesc_,
layer,
xDesc_->descs()[0],
wDesc_,
Input(1).template data<T>(),
param_id, // Forget gate bias for recurrent input
matrixParamDesc,
&pmatrix));
int numDims;
std::vector<int> matDims(3);
cudnnDataType_t dt;
cudnnTensorFormat_t tf;
CUDNN_ENFORCE(cudnnGetFilterNdDescriptor(
matrixParamDesc, 3, &dt, &tf, &numDims, matDims.data()));
CAFFE_ENFORCE_EQ(numDims, 3);
if (mode == SET_PARAM) {
CAFFE_ENFORCE_EQ(matDims[0] * matDims[1] * matDims[2], Input(2).numel());
this->context_.template CopySameDevice<T>(
matDims[0] * matDims[1] * matDims[2],
Input(2).template data<T>(),
static_cast<T*>(pmatrix));
} else {
Output(0)->Resize(matDims);
this->context_.template CopySameDevice<T>(
matDims[0] * matDims[1] * matDims[2],
static_cast<T*>(pmatrix),
Output(0)->template mutable_data<T>());
}
} else {
CAFFE_ENFORCE(false, "Unknown param type:", param_type);
}
return true;
}
REGISTER_CUDNN_OPERATOR(Recurrent, RecurrentOp<float>);
OPERATOR_SCHEMA(Recurrent).NumInputs(4).NumOutputs(5).SetDoc(R"DOC(
Recurrent wraps the CuDNN R5 RNN implementation. See the CuDNN R5
documentation for more information.
In general, the implementation takes an input (TxNxD) tensor, the
hidden state input (NxD), the cell input (NxD), and a weight tensor
(effectively an opaque blob, where the size and layout is dictated by
CuDNN).
The outputs are the output (again, TxNxD), the final hidden/cell
states (NxD). These can be reset (at sequence boundaries across
minibatches) by multiplying by zero.
The CuDNN arguments (hidden_size, bidirectional, num_layers, rnn_mode,
input_mode) are passed directly through to CuDNN.
)DOC");
REGISTER_CUDNN_OPERATOR(RecurrentGradient, RecurrentGradientOp<float>);
OPERATOR_SCHEMA(RecurrentGradient)
.NumInputs(7)
.NumOutputs(6)
.AllowInplace({{4, 5}});
REGISTER_CUDNN_OPERATOR(
RecurrentParamSet,
RecurrentParamAccessOp<float, SET_PARAM>);
OPERATOR_SCHEMA(RecurrentParamSet)
.NumInputs(3)
.NumOutputs(1)
.EnforceInplace({{1, 0}})
.SetDoc("Set individual parameters of a recurrent net.")
.Arg("param_type", R"DOC(Type of param to be set:
"input_gate_w", "forget_gate_w", "cell_w", "output_gate_w"
"input_gate_b", "forget_gate_b", "cell_b", "output_gate_b"
)DOC")
.Arg("input_type", "'recurrent' or 'input'")
.Arg("layer", "layer index (starting from 0)")
.Input(0, "input", R"DOC(Input blob. Needed for inferring the shapes.
A dummy tensor matching the input shape is ok.)DOC")
.Input(1, "all_params", "Blob holding all the parameters")
.Input(2, "param", "Values for the specified parameter")
.Output(
0,
"all_params",
"Blob holding all the parameters (same as input(1))");
REGISTER_CUDNN_OPERATOR(
RecurrentParamGet,
RecurrentParamAccessOp<float, GET_PARAM>);
OPERATOR_SCHEMA(RecurrentParamGet)
.NumInputs(2)
.NumOutputs(1)
.SetDoc("Retrieve individual parameters of a recurrent net op.")
.Arg("param_type", R"DOC(Type of param to be set:
"input_gate_w", "forget_gate_w", "cell_w", "output_gate_w"
"input_gate_b", "forget_gate_b", "cell_b", "output_gate_b"
)DOC")
.Arg("input_type", "'recurrent' or 'input'")
.Arg("layer", "layer index (starting from 0)")
.Input(0, "input", R"DOC(Input blob. Needed for inferring the shapes.
A dummy tensor matching the input shape is ok.)DOC")
.Input(1, "all_params", "Blob holding all the parameters")
.Output(0, "param", "Blob holding the requested values");
struct GetRecurrentGradient : public GradientMakerBase {
using GradientMakerBase::GradientMakerBase;
vector<OperatorDef> GetGradientDefs() override {
return SingleGradientDef(
"RecurrentGradient",
"",
vector<string>{I(0), // INPUT
I(1), // HIDDEN_INPUT
I(2), // CELL_INPUT
I(3), // WEIGHT
O(3), // RNN_SCRATCH
O(0), // OUTPUT
GO(0)}, // GRAD_OUTPUT
// TODO: not currently using these gradients, investigate t16675365
// GO(1), // GRAD_HIDDEN_OUTPUT
// GO(2)}, // GRAD_CELL_OUTPUT
vector<string>{
GI(0), // GRAD_INPUT
GI(1), // GRAD_HIDDEN_INPUT
GI(2), // GRAD_CELL_INPUT
GI(3), // GRAD_WEIGHT
O(4), // DROPOUT_STATES
O(3) // RNN_SCRATCH
});
}
};
REGISTER_GRADIENT(Recurrent, GetRecurrentGradient);
}
|