File: roi_align_gradient_op.cc

package info (click to toggle)
pytorch 1.13.1%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 139,252 kB
  • sloc: cpp: 1,100,274; python: 706,454; ansic: 83,052; asm: 7,618; java: 3,273; sh: 2,841; javascript: 612; makefile: 323; xml: 269; ruby: 185; yacc: 144; objc: 68; lex: 44
file content (285 lines) | stat: -rw-r--r-- 8,493 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
#include "roi_align_gradient_op.h"

#include "caffe2/utils/eigen_utils.h"
#include "caffe2/utils/math.h"

namespace caffe2 {
namespace {

template <typename T>
void bilinear_interpolate_gradient(
    const int height,
    const int width,
    T y,
    T x,
    T& w1,
    T& w2,
    T& w3,
    T& w4,
    int& x_low,
    int& x_high,
    int& y_low,
    int& y_high,
    const int /*index*/ /* index for debug only*/) {
  // deal with cases that inverse elements are out of feature map boundary
  if (y < -1.0 || y > height || x < -1.0 || x > width) {
    // empty
    w1 = w2 = w3 = w4 = 0.;
    x_low = x_high = y_low = y_high = -1;
    return;
  }

  if (y <= 0) {
    y = 0;
  }
  if (x <= 0) {
    x = 0;
  }

  y_low = (int)y;
  x_low = (int)x;

  if (y_low >= height - 1) {
    y_high = y_low = height - 1;
    y = (T)y_low;
  } else {
    y_high = y_low + 1;
  }

  if (x_low >= width - 1) {
    x_high = x_low = width - 1;
    x = (T)x_low;
  } else {
    x_high = x_low + 1;
  }

  T ly = y - y_low;
  T lx = x - x_low;
  T hy = 1. - ly, hx = 1. - lx;

  // reference in forward
  // T v1 = bottom_data[y_low * width + x_low];
  // T v2 = bottom_data[y_low * width + x_high];
  // T v3 = bottom_data[y_high * width + x_low];
  // T v4 = bottom_data[y_high * width + x_high];
  // T val = (w1 * v1 + w2 * v2 + w3 * v3 + w4 * v4);

  w1 = hy * hx, w2 = hy * lx, w3 = ly * hx, w4 = ly * lx;

  return;
}

template <class T>
inline void add(const T& val, T* address) {
  *address += val;
}

template <typename T>
void ROIAlignBackwardFeature(
    const int nthreads,
    const T* top_diff,
    const int /*num_rois*/,
    const T& spatial_scale,
    const int channels,
    const int height,
    const int width,
    const int pooled_height,
    const int pooled_width,
    const int sampling_ratio,
    T* bottom_diff,
    const T* bottom_rois,
    int rois_cols,
    bool continuous_coordinate) {
  DCHECK(rois_cols == 4 || rois_cols == 5);

  for (int index = 0; index < nthreads; index++) {
    // (n, c, ph, pw) is an element in the pooled output
    int pw = index % pooled_width;
    int ph = (index / pooled_width) % pooled_height;
    int c = (index / pooled_width / pooled_height) % channels;
    int n = index / pooled_width / pooled_height / channels;

    const T* offset_bottom_rois = bottom_rois + n * rois_cols;
    int roi_batch_ind = 0;
    if (rois_cols == 5) {
      roi_batch_ind = offset_bottom_rois[0];
      offset_bottom_rois++;
    }

    // Do not using rounding; this implementation detail is critical
    T roi_offset = continuous_coordinate ? T(0.5) : 0;
    T roi_start_w = offset_bottom_rois[0] * spatial_scale - roi_offset;
    T roi_start_h = offset_bottom_rois[1] * spatial_scale - roi_offset;
    T roi_end_w = offset_bottom_rois[2] * spatial_scale - roi_offset;
    T roi_end_h = offset_bottom_rois[3] * spatial_scale - roi_offset;

    T roi_width = roi_end_w - roi_start_w;
    T roi_height = roi_end_h - roi_start_h;
    if (continuous_coordinate) {
      CAFFE_ENFORCE(
          roi_width >= 0 && roi_height >= 0,
          "ROIs in ROIAlign do not have non-negative size!");
    } else { // backward compatibility
      // Force malformed ROIs to be 1x1
      roi_width = std::max(roi_width, (T)1.);
      roi_height = std::max(roi_height, (T)1.);
    }
    T bin_size_h = static_cast<T>(roi_height) / static_cast<T>(pooled_height);
    T bin_size_w = static_cast<T>(roi_width) / static_cast<T>(pooled_width);

    T* offset_bottom_diff =
        bottom_diff + (roi_batch_ind * channels + c) * height * width;

    int top_offset = (n * channels + c) * pooled_height * pooled_width;
    const T* offset_top_diff = top_diff + top_offset;
    const T top_diff_this_bin = offset_top_diff[ph * pooled_width + pw];

    // We use roi_bin_grid to sample the grid and mimic integral
    int roi_bin_grid_h = (sampling_ratio > 0)
        ? sampling_ratio
        : ceil(roi_height / pooled_height); // e.g., = 2
    int roi_bin_grid_w =
        (sampling_ratio > 0) ? sampling_ratio : ceil(roi_width / pooled_width);

    // We do average (integral) pooling inside a bin
    const T count = roi_bin_grid_h * roi_bin_grid_w; // e.g. = 4

    for (int iy = 0; iy < roi_bin_grid_h; iy++) {
      const T y = roi_start_h + ph * bin_size_h +
          // NOLINTNEXTLINE(bugprone-narrowing-conversions,cppcoreguidelines-narrowing-conversions)
          static_cast<T>(iy + .5f) * bin_size_h /
              static_cast<T>(roi_bin_grid_h); // e.g., 0.5, 1.5
      for (int ix = 0; ix < roi_bin_grid_w; ix++) {
        const T x = roi_start_w + pw * bin_size_w +
            // NOLINTNEXTLINE(bugprone-narrowing-conversions,cppcoreguidelines-narrowing-conversions)
            static_cast<T>(ix + .5f) * bin_size_w /
                static_cast<T>(roi_bin_grid_w);

        T w1, w2, w3, w4;
        // NOLINTNEXTLINE(cppcoreguidelines-init-variables)
        int x_low, x_high, y_low, y_high;

        bilinear_interpolate_gradient(
            height,
            width,
            y,
            x,
            w1,
            w2,
            w3,
            w4,
            x_low,
            x_high,
            y_low,
            y_high,
            index);

        T g1 = top_diff_this_bin * w1 / count;
        T g2 = top_diff_this_bin * w2 / count;
        T g3 = top_diff_this_bin * w3 / count;
        T g4 = top_diff_this_bin * w4 / count;

        if (x_low >= 0 && x_high >= 0 && y_low >= 0 && y_high >= 0) {
          // atomic add is not needed for now since it is single threaded
          add(static_cast<T>(g1), offset_bottom_diff + y_low * width + x_low);
          add(static_cast<T>(g2), offset_bottom_diff + y_low * width + x_high);
          add(static_cast<T>(g3), offset_bottom_diff + y_high * width + x_low);
          add(static_cast<T>(g4), offset_bottom_diff + y_high * width + x_high);
        } // if
      } // ix
    } // iy
  } // for
} // ROIAlignBackward

} // namespace

template <>
C10_EXPORT bool RoIAlignGradientOp<float, CPUContext>::RunOnDevice() {
  auto& X = Input(0); // Input data to pool
  auto& R = Input(1); // RoIs
  auto& dY = Input(2); // Gradient of net w.r.t. output of "forward" op
                       // (aka "gradOutput")

  CAFFE_ENFORCE_EQ(R.dim(), 2);
  // if R has 5 columns, the first column is the index, otherwise 0
  CAFFE_ENFORCE(R.dim32(1) == 4 || R.dim32(1) == 5);

  auto* dX = Output(
      0,
      X.sizes(),
      at::dtype<float>()); // Gradient of net w.r.t. input to "forward" op (aka
                           // "gradInput")

  // Must zero-out dX before accumulating gradients
  // (TODO): Kaiming - is this safe?
  math::Set<float, CPUContext>(
      dX->numel(), 0.f, dX->template mutable_data<float>(), &context_);

  if (dY.numel() > 0) { // Handle possibly empty gradient if there were no rois
    ROIAlignBackwardFeature<float>(
        dY.numel(),
        dY.data<float>(),
        R.dim32(0),
        spatial_scale_,
        X.dim32(1),
        X.dim32(2),
        X.dim32(3),
        pooled_height_,
        pooled_width_,
        sampling_ratio_,
        dX->template mutable_data<float>(),
        R.data<float>(),
        R.dim32(1),
        aligned_);
  }
  return true;
}

REGISTER_CPU_OPERATOR(RoIAlignGradient, RoIAlignGradientOp<float, CPUContext>);

// Input: X, rois, dY (aka "gradOutput");
// Output: dX (aka "gradInput")
OPERATOR_SCHEMA(RoIAlignGradient)
    .NumInputs(3)
    .NumOutputs(1)
    .Input(0, "X", "See RoIPoolF.")
    .Input(1, "RoIs", "See RoIPoolF.")
    .Input(2, "dY", "Gradient of forward output 0 (Y)")
    .Output(0, "dX", "Gradient of forward input 0 (X)");

namespace {

class GetRoIAlignGradient : public GradientMakerBase {
  using GradientMakerBase::GradientMakerBase;
  vector<OperatorDef> GetGradientDefs() override {
    return SingleGradientDef(
        "RoIAlignGradient",
        "",
        vector<string>{I(0), I(1), GO(0)},
        vector<string>{GI(0)});
  }
};

} // namespace

REGISTER_GRADIENT(RoIAlign, GetRoIAlignGradient);

template <typename T>
using RoIAlignGradientCPUOp = RoIAlignGradientOp<T, CPUContext>;

} // namespace caffe2

C10_EXPORT_CAFFE2_OP_TO_C10_CPU(
    RoIAlignGradient,
    "_caffe2::RoIAlignGradient("
    "    Tensor features,"
    "    Tensor rois,"
    "    Tensor grad,"
    "    str order,"
    "    float spatial_scale,"
    "    int pooled_h,"
    "    int pooled_w,"
    "    int sampling_ratio,"
    "    bool aligned"
    ") -> Tensor",
    caffe2::RoIAlignGradientCPUOp<float>);