File: roi_align_gradient_op.cu

package info (click to toggle)
pytorch 1.13.1%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 139,252 kB
  • sloc: cpp: 1,100,274; python: 706,454; ansic: 83,052; asm: 7,618; java: 3,273; sh: 2,841; javascript: 612; makefile: 323; xml: 269; ruby: 185; yacc: 144; objc: 68; lex: 44
file content (232 lines) | stat: -rw-r--r-- 7,045 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
#include "caffe2/operators/roi_align_gradient_op.h"

#include <stdio.h>
#include <cfloat>
#include "caffe2/core/context_gpu.h"
#include "caffe2/utils/GpuAtomics.cuh"
#include "caffe2/utils/math.h"

namespace caffe2 {

namespace {

template <typename T>
__device__ void bilinear_interpolate_gradient(
    const int height,
    const int width,
    T y,
    T x,
    T& w1,
    T& w2,
    T& w3,
    T& w4,
    int& x_low,
    int& x_high,
    int& y_low,
    int& y_high) {
  // deal with cases that inverse elements are out of feature map boundary
  if (y < -1.0 || y > height || x < -1.0 || x > width) {
    // empty
    w1 = w2 = w3 = w4 = 0.;
    x_low = x_high = y_low = y_high = -1;
    return;
  }

  if (y <= 0) {
    y = 0;
  }
  if (x <= 0) {
    x = 0;
  }

  y_low = (int)y;
  x_low = (int)x;

  if (y_low >= height - 1) {
    y_high = y_low = height - 1;
    y = (T)y_low;
  } else {
    y_high = y_low + 1;
  }

  if (x_low >= width - 1) {
    x_high = x_low = width - 1;
    x = (T)x_low;
  } else {
    x_high = x_low + 1;
  }

  T ly = y - y_low;
  T lx = x - x_low;
  T hy = 1. - ly, hx = 1. - lx;

  // reference in forward
  // T v1 = bottom_data[y_low * width + x_low];
  // T v2 = bottom_data[y_low * width + x_high];
  // T v3 = bottom_data[y_high * width + x_low];
  // T v4 = bottom_data[y_high * width + x_high];
  // T val = (w1 * v1 + w2 * v2 + w3 * v3 + w4 * v4);

  w1 = hy * hx, w2 = hy * lx, w3 = ly * hx, w4 = ly * lx;

  return;
}

template <typename T>
__global__ void RoIAlignBackwardFeature(
    const int nthreads,
    const T *const top_diff,
    const T spatial_scale,
    const int channels,
    const int height,
    const int width,
    const int pooled_height,
    const int pooled_width,
    const int sampling_ratio,
    T *const bottom_diff,
    const T *const bottom_rois,
    bool continuous_coordinate) {
  CUDA_1D_KERNEL_LOOP(index, nthreads) {
    // (n, c, ph, pw) is an element in the pooled output
    const int pw = index % pooled_width;
    const int ph = (index / pooled_width) % pooled_height;
    const int c = (index / pooled_width / pooled_height) % channels;
    const int n = index / pooled_width / pooled_height / channels;

    const T *const offset_bottom_rois = bottom_rois + n * 5;
    const int roi_batch_ind = offset_bottom_rois[0];

    // Do not using rounding; this implementation detail is critical
    T roi_offset = continuous_coordinate ? T(0.5) : 0;
    T roi_start_w = offset_bottom_rois[1] * spatial_scale - roi_offset;
    T roi_start_h = offset_bottom_rois[2] * spatial_scale - roi_offset;
    T roi_end_w = offset_bottom_rois[3] * spatial_scale - roi_offset;
    T roi_end_h = offset_bottom_rois[4] * spatial_scale - roi_offset;

    T roi_width = roi_end_w - roi_start_w;
    T roi_height = roi_end_h - roi_start_h;
    if (!continuous_coordinate) { // backward compatibility
      // Force malformed ROIs to be 1x1
      roi_width = c10::cuda::compat::max(roi_width, (T)1.);
      roi_height = c10::cuda::compat::max(roi_height, (T)1.);
    }
    T bin_size_h = static_cast<T>(roi_height) / static_cast<T>(pooled_height);
    T bin_size_w = static_cast<T>(roi_width) / static_cast<T>(pooled_width);

    T* offset_bottom_diff =
        bottom_diff + (roi_batch_ind * channels + c) * height * width;

    int top_offset = (n * channels + c) * pooled_height * pooled_width;
    const T* offset_top_diff = top_diff + top_offset;
    const T top_diff_this_bin = offset_top_diff[ph * pooled_width + pw];

    // We use roi_bin_grid to sample the grid and mimic integral
    int roi_bin_grid_h = (sampling_ratio > 0)
        ? sampling_ratio
        : ceil(roi_height / pooled_height); // e.g., = 2
    int roi_bin_grid_w =
        (sampling_ratio > 0) ? sampling_ratio : ceil(roi_width / pooled_width);

    // We do average (integral) pooling inside a bin
    const T count = roi_bin_grid_h * roi_bin_grid_w; // e.g. = 4

    for (int iy = 0; iy < roi_bin_grid_h; iy++) // e.g., iy = 0, 1
    {
      const T y = roi_start_h + ph * bin_size_h +
          static_cast<T>(iy + .5f) * bin_size_h /
              static_cast<T>(roi_bin_grid_h); // e.g., 0.5, 1.5
      for (int ix = 0; ix < roi_bin_grid_w; ix++) {
        const T x = roi_start_w + pw * bin_size_w +
            static_cast<T>(ix + .5f) * bin_size_w /
                static_cast<T>(roi_bin_grid_w);

        T w1, w2, w3, w4;
        int x_low, x_high, y_low, y_high;

        bilinear_interpolate_gradient(
            height,
            width,
            y,
            x,
            w1,
            w2,
            w3,
            w4,
            x_low,
            x_high,
            y_low,
            y_high);

        T g1 = top_diff_this_bin * w1 / count;
        T g2 = top_diff_this_bin * w2 / count;
        T g3 = top_diff_this_bin * w3 / count;
        T g4 = top_diff_this_bin * w4 / count;

        if (x_low >= 0 && x_high >= 0 && y_low >= 0 && y_high >= 0) {
          gpu_atomic_add(
              offset_bottom_diff + y_low * width + x_low, static_cast<T>(g1));
          gpu_atomic_add(
              offset_bottom_diff + y_low * width + x_high, static_cast<T>(g2));
          gpu_atomic_add(
              offset_bottom_diff + y_high * width + x_low, static_cast<T>(g3));
          gpu_atomic_add(
              offset_bottom_diff + y_high * width + x_high, static_cast<T>(g4));
        } // if
      } // ix
    } // iy
  } // CUDA_1D_KERNEL_LOOP
} // RoIAlignBackward

} // namespace

template <>
C10_EXPORT bool RoIAlignGradientOp<float, CUDAContext>::RunOnDevice() {
  auto& X = Input(0); // Input data to pool
  auto& R = Input(1); // RoIs
  auto& dY = Input(2); // Gradient of net w.r.t. output of "forward" op
                       // (aka "gradOutput")

  auto* dX = Output(
      0, X.sizes(), at::dtype<float>()); // Gradient of net w.r.t. input to
                                         // "forward" op (aka "gradInput")

  // Must zero-out dX before accumulating gradients
  // (TODO): Kaiming - is this safe?
  math::Set<float, CUDAContext>(
      dX->numel(), 0.f, dX->template mutable_data<float>(), &context_);

  if (dY.numel() > 0) { // Handle possibly empty gradient if there were no rois
    RoIAlignBackwardFeature<float>
        <<<CAFFE_GET_BLOCKS(dY.numel()),
           CAFFE_CUDA_NUM_THREADS,
           0,
           context_.cuda_stream()>>>(
            dY.numel(),
            dY.data<float>(),
            spatial_scale_,
            X.dim32(1),
            X.dim32(2),
            X.dim32(3),
            pooled_height_,
            pooled_width_,
            sampling_ratio_,
            dX->template mutable_data<float>(),
            R.data<float>(),
            aligned_);
    C10_CUDA_KERNEL_LAUNCH_CHECK();
  }
  return true;
}

REGISTER_CUDA_OPERATOR(
    RoIAlignGradient,
    RoIAlignGradientOp<float, CUDAContext>);

template <typename T>
using RoIAlignGradientCUDAOp = RoIAlignGradientOp<T, CUDAContext>;

} // namespace caffe2

C10_EXPORT_CAFFE2_OP_TO_C10_CUDA(
    RoIAlignGradient,
    caffe2::RoIAlignGradientCUDAOp<float>);