1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195
|
#include "caffe2/operators/roi_align_op.h"
#include <stdio.h>
#include <cfloat>
#include "caffe2/core/context_gpu.h"
#include "caffe2/utils/math.h"
namespace caffe2 {
namespace {
template <typename T>
__device__ T bilinear_interpolate(
const T* bottom_data,
const int height,
const int width,
T y,
T x) {
// deal with cases that inverse elements are out of feature map boundary
if (y < -1.0 || y > height || x < -1.0 || x > width) {
// empty
return 0;
}
if (y <= 0) {
y = 0;
}
if (x <= 0) {
x = 0;
}
int y_low = (int)y;
int x_low = (int)x;
int y_high;
int x_high;
if (y_low >= height - 1) {
y_high = y_low = height - 1;
y = (T)y_low;
} else {
y_high = y_low + 1;
}
if (x_low >= width - 1) {
x_high = x_low = width - 1;
x = (T)x_low;
} else {
x_high = x_low + 1;
}
T ly = y - y_low;
T lx = x - x_low;
T hy = 1. - ly, hx = 1. - lx;
// do bilinear interpolation
T v1 = bottom_data[y_low * width + x_low];
T v2 = bottom_data[y_low * width + x_high];
T v3 = bottom_data[y_high * width + x_low];
T v4 = bottom_data[y_high * width + x_high];
T w1 = hy * hx, w2 = hy * lx, w3 = ly * hx, w4 = ly * lx;
T val = (w1 * v1 + w2 * v2 + w3 * v3 + w4 * v4);
return val;
}
template <typename T>
__global__ void RoIAlignForward(
const int nthreads,
const T* bottom_data,
const T spatial_scale,
const int channels,
const int height,
const int width,
const int pooled_height,
const int pooled_width,
const int sampling_ratio,
const T* bottom_rois,
int roi_cols,
T* top_data,
bool continuous_coordinate) {
CUDA_1D_KERNEL_LOOP(index, nthreads) {
// (n, c, ph, pw) is an element in the pooled output
int pw = index % pooled_width;
int ph = (index / pooled_width) % pooled_height;
int c = (index / pooled_width / pooled_height) % channels;
int n = index / pooled_width / pooled_height / channels;
// RoI could have 4 or 5 columns
const T* offset_bottom_rois = bottom_rois + n * roi_cols;
int roi_batch_ind = 0;
if (roi_cols == 5) {
roi_batch_ind = offset_bottom_rois[0];
offset_bottom_rois++;
}
// Do not using rounding; this implementation detail is critical
T roi_offset = continuous_coordinate ? T(0.5) : 0;
T roi_start_w = offset_bottom_rois[0] * spatial_scale - roi_offset;
T roi_start_h = offset_bottom_rois[1] * spatial_scale - roi_offset;
T roi_end_w = offset_bottom_rois[2] * spatial_scale - roi_offset;
T roi_end_h = offset_bottom_rois[3] * spatial_scale - roi_offset;
T roi_width = roi_end_w - roi_start_w;
T roi_height = roi_end_h - roi_start_h;
if (!continuous_coordinate) { // backward compatibility
// Force malformed ROIs to be 1x1
roi_width = c10::cuda::compat::max(roi_width, (T)1.);
roi_height = c10::cuda::compat::max(roi_height, (T)1.);
}
T bin_size_h = static_cast<T>(roi_height) / static_cast<T>(pooled_height);
T bin_size_w = static_cast<T>(roi_width) / static_cast<T>(pooled_width);
const T* offset_bottom_data =
bottom_data + (roi_batch_ind * channels + c) * height * width;
// We use roi_bin_grid to sample the grid and mimic integral
int roi_bin_grid_h = (sampling_ratio > 0)
? sampling_ratio
: ceil(roi_height / pooled_height); // e.g., = 2
int roi_bin_grid_w =
(sampling_ratio > 0) ? sampling_ratio : ceil(roi_width / pooled_width);
// We do average (integral) pooling inside a bin
const T count = roi_bin_grid_h * roi_bin_grid_w; // e.g. = 4
T output_val = 0.;
for (int iy = 0; iy < roi_bin_grid_h; iy++) // e.g., iy = 0, 1
{
const T y = roi_start_h + ph * bin_size_h +
static_cast<T>(iy + .5f) * bin_size_h /
static_cast<T>(roi_bin_grid_h); // e.g., 0.5, 1.5
for (int ix = 0; ix < roi_bin_grid_w; ix++) {
const T x = roi_start_w + pw * bin_size_w +
static_cast<T>(ix + .5f) * bin_size_w /
static_cast<T>(roi_bin_grid_w);
T val = bilinear_interpolate(
offset_bottom_data, height, width, y, x);
output_val += val;
}
}
output_val /= count;
top_data[index] = output_val;
}
}
} // namespace
template <>
C10_EXPORT bool RoIAlignOp<float, CUDAContext>::RunOnDevice() {
auto& X = Input(0); // Input data to pool
auto& R = Input(1); // RoIs
// RoI pooled data
if (R.numel() == 0) {
// Handle empty rois
Output(0, {0, X.dim32(1), pooled_h_, pooled_w_}, at::dtype<float>());
return true;
}
assert(sampling_ratio_ >= 0);
auto* Y = Output(
0, {R.dim32(0), X.dim32(1), pooled_h_, pooled_w_}, at::dtype<float>());
int output_size = Y->numel();
RoIAlignForward<float>
<<<CAFFE_GET_BLOCKS(output_size),
CAFFE_CUDA_NUM_THREADS,
0,
context_.cuda_stream()>>>(
output_size,
X.data<float>(),
spatial_scale_,
X.dim32(1),
X.dim32(2),
X.dim32(3),
pooled_h_,
pooled_w_,
sampling_ratio_,
R.data<float>(),
R.dim32(1),
Y->mutable_data<float>(),
aligned_);
C10_CUDA_KERNEL_LAUNCH_CHECK();
return true;
}
REGISTER_CUDA_OPERATOR(RoIAlign, RoIAlignOp<float, CUDAContext>);
} // namespace caffe2
using RoIAlignOpFloatCUDA = caffe2::RoIAlignOp<float, caffe2::CUDAContext>;
C10_EXPORT_CAFFE2_OP_TO_C10_CUDA(RoIAlign, RoIAlignOpFloatCUDA);
|