File: roi_align_rotated_gradient_op.cu

package info (click to toggle)
pytorch 1.13.1%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 139,252 kB
  • sloc: cpp: 1,100,274; python: 706,454; ansic: 83,052; asm: 7,618; java: 3,273; sh: 2,841; javascript: 612; makefile: 323; xml: 269; ruby: 185; yacc: 144; objc: 68; lex: 44
file content (231 lines) | stat: -rw-r--r-- 6,941 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
#ifdef _MSC_VER
#define _USE_MATH_DEFINES // For M_PI
#endif // _MSC_VER
#include <cmath>

#include "caffe2/operators/roi_align_rotated_gradient_op.h"

#include <stdio.h>
#include <cfloat>
#include "caffe2/core/context_gpu.h"
#include "caffe2/utils/GpuAtomics.cuh"
#include "caffe2/utils/math.h"

namespace caffe2 {

namespace {

template <typename T>
__device__ void bilinear_interpolate_gradient(
    const int height,
    const int width,
    T y,
    T x,
    T& w1,
    T& w2,
    T& w3,
    T& w4,
    int& x_low,
    int& x_high,
    int& y_low,
    int& y_high) {
  // deal with cases that inverse elements are out of feature map boundary
  if (y < -1.0 || y > height || x < -1.0 || x > width) {
    // empty
    w1 = w2 = w3 = w4 = 0.;
    x_low = x_high = y_low = y_high = -1;
    return;
  }

  if (y <= 0) {
    y = 0;
  }
  if (x <= 0) {
    x = 0;
  }

  y_low = (int)y;
  x_low = (int)x;

  if (y_low >= height - 1) {
    y_high = y_low = height - 1;
    y = (T)y_low;
  } else {
    y_high = y_low + 1;
  }

  if (x_low >= width - 1) {
    x_high = x_low = width - 1;
    x = (T)x_low;
  } else {
    x_high = x_low + 1;
  }

  T ly = y - y_low;
  T lx = x - x_low;
  T hy = 1. - ly, hx = 1. - lx;

  w1 = hy * hx, w2 = hy * lx, w3 = ly * hx, w4 = ly * lx;

  return;
}

template <typename T>
__global__ void RoIAlignRotatedBackward(
    const int nthreads,
    const T* top_diff,
    const T spatial_scale,
    const int channels,
    const int height,
    const int width,
    const int pooled_height,
    const int pooled_width,
    const int sampling_ratio,
    T* bottom_diff,
    const T* bottom_rois,
    bool continuous_coordinate) {
  CUDA_1D_KERNEL_LOOP(index, nthreads) {
    // (n, c, ph, pw) is an element in the pooled output
    int pw = index % pooled_width;
    int ph = (index / pooled_width) % pooled_height;
    int c = (index / pooled_width / pooled_height) % channels;
    int n = index / pooled_width / pooled_height / channels;

    const T* offset_bottom_rois = bottom_rois + n * 6;
    int roi_batch_ind = offset_bottom_rois[0];

    // Do not round
    T roi_offset = continuous_coordinate ? T(0.5) : 0;
    T roi_center_w = offset_bottom_rois[1] * spatial_scale - roi_offset;
    T roi_center_h = offset_bottom_rois[2] * spatial_scale - roi_offset;
    T roi_width = offset_bottom_rois[3] * spatial_scale;
    T roi_height = offset_bottom_rois[4] * spatial_scale;
    T theta = offset_bottom_rois[5] * M_PI / 180.0;

    if (!continuous_coordinate) { // backward compatibility
      // Force malformed ROIs to be 1x1
      roi_width = c10::cuda::compat::max(roi_width, (T)1.);
      roi_height = c10::cuda::compat::max(roi_height, (T)1.);
    }
    T bin_size_h = static_cast<T>(roi_height) / static_cast<T>(pooled_height);
    T bin_size_w = static_cast<T>(roi_width) / static_cast<T>(pooled_width);

    T* offset_bottom_diff =
        bottom_diff + (roi_batch_ind * channels + c) * height * width;

    int top_offset = (n * channels + c) * pooled_height * pooled_width;
    const T* offset_top_diff = top_diff + top_offset;
    const T top_diff_this_bin = offset_top_diff[ph * pooled_width + pw];

    // We use roi_bin_grid to sample the grid and mimic integral
    int roi_bin_grid_h = (sampling_ratio > 0)
        ? sampling_ratio
        : ceil(roi_height / pooled_height); // e.g., = 2
    int roi_bin_grid_w =
        (sampling_ratio > 0) ? sampling_ratio : ceil(roi_width / pooled_width);

    // roi_start_h and roi_start_w are computed wrt the center of RoI (x, y).
    // Appropriate translation needs to be applied after.
    T roi_start_h = -roi_height / 2.0;
    T roi_start_w = -roi_width / 2.0;
    T cosTheta = cos(theta);
    T sinTheta = sin(theta);

    // We do average (integral) pooling inside a bin
    const T count = roi_bin_grid_h * roi_bin_grid_w; // e.g. = 4

    for (int iy = 0; iy < roi_bin_grid_h; iy++) // e.g., iy = 0, 1
    {
      const T yy = roi_start_h + ph * bin_size_h +
          static_cast<T>(iy + .5f) * bin_size_h /
              static_cast<T>(roi_bin_grid_h); // e.g., 0.5, 1.5
      for (int ix = 0; ix < roi_bin_grid_w; ix++) {
        const T xx = roi_start_w + pw * bin_size_w +
            static_cast<T>(ix + .5f) * bin_size_w /
                static_cast<T>(roi_bin_grid_w);

        // Rotate by theta around the center and translate
        T x = xx * cosTheta + yy * sinTheta + roi_center_w;
        T y = yy * cosTheta - xx * sinTheta + roi_center_h;

        T w1, w2, w3, w4;
        int x_low, x_high, y_low, y_high;

        bilinear_interpolate_gradient(
            height,
            width,
            y,
            x,
            w1,
            w2,
            w3,
            w4,
            x_low,
            x_high,
            y_low,
            y_high);

        T g1 = top_diff_this_bin * w1 / count;
        T g2 = top_diff_this_bin * w2 / count;
        T g3 = top_diff_this_bin * w3 / count;
        T g4 = top_diff_this_bin * w4 / count;

        if (x_low >= 0 && x_high >= 0 && y_low >= 0 && y_high >= 0) {
          gpu_atomic_add(
              offset_bottom_diff + y_low * width + x_low, static_cast<T>(g1));
          gpu_atomic_add(
              offset_bottom_diff + y_low * width + x_high, static_cast<T>(g2));
          gpu_atomic_add(
              offset_bottom_diff + y_high * width + x_low, static_cast<T>(g3));
          gpu_atomic_add(
              offset_bottom_diff + y_high * width + x_high, static_cast<T>(g4));
        } // if
      } // ix
    } // iy
  } // CUDA_1D_KERNEL_LOOP
} // RoIAlignRotatedBackward

} // namespace

template <>
C10_EXPORT bool RoIAlignRotatedGradientOp<float, CUDAContext>::RunOnDevice() {
  auto& X = Input(0); // Input data to pool
  auto& R = Input(1); // RoIs
  auto& dY = Input(2); // Gradient of net w.r.t. output of "forward" op
                       // (aka "gradOutput")

  auto* dX = Output(
      0, X.sizes(), at::dtype<float>()); // Gradient of net w.r.t. input to
                                         // "forward" op (aka "gradInput")

  // Must zero-out dX before accumulating gradients
  math::Set<float, CUDAContext>(
      dX->numel(), 0.f, dX->mutable_data<float>(), &context_);

  if (dY.numel() > 0) { // Handle possibly empty gradient if there were no rois
    RoIAlignRotatedBackward<float>
        <<<CAFFE_GET_BLOCKS(dY.numel()),
           CAFFE_CUDA_NUM_THREADS,
           0,
           context_.cuda_stream()>>>(
            dY.numel(),
            dY.data<float>(),
            spatial_scale_,
            X.dim32(1),
            X.dim32(2),
            X.dim32(3),
            pooled_height_,
            pooled_width_,
            sampling_ratio_,
            dX->mutable_data<float>(),
            R.data<float>(),
            aligned_);
    C10_CUDA_KERNEL_LAUNCH_CHECK();
  }
  return true;
}

REGISTER_CUDA_OPERATOR(
    RoIAlignRotatedGradient,
    RoIAlignRotatedGradientOp<float, CUDAContext>);
} // namespace caffe2