1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231
|
#ifdef _MSC_VER
#define _USE_MATH_DEFINES // For M_PI
#endif // _MSC_VER
#include <cmath>
#include "caffe2/operators/roi_align_rotated_gradient_op.h"
#include <stdio.h>
#include <cfloat>
#include "caffe2/core/context_gpu.h"
#include "caffe2/utils/GpuAtomics.cuh"
#include "caffe2/utils/math.h"
namespace caffe2 {
namespace {
template <typename T>
__device__ void bilinear_interpolate_gradient(
const int height,
const int width,
T y,
T x,
T& w1,
T& w2,
T& w3,
T& w4,
int& x_low,
int& x_high,
int& y_low,
int& y_high) {
// deal with cases that inverse elements are out of feature map boundary
if (y < -1.0 || y > height || x < -1.0 || x > width) {
// empty
w1 = w2 = w3 = w4 = 0.;
x_low = x_high = y_low = y_high = -1;
return;
}
if (y <= 0) {
y = 0;
}
if (x <= 0) {
x = 0;
}
y_low = (int)y;
x_low = (int)x;
if (y_low >= height - 1) {
y_high = y_low = height - 1;
y = (T)y_low;
} else {
y_high = y_low + 1;
}
if (x_low >= width - 1) {
x_high = x_low = width - 1;
x = (T)x_low;
} else {
x_high = x_low + 1;
}
T ly = y - y_low;
T lx = x - x_low;
T hy = 1. - ly, hx = 1. - lx;
w1 = hy * hx, w2 = hy * lx, w3 = ly * hx, w4 = ly * lx;
return;
}
template <typename T>
__global__ void RoIAlignRotatedBackward(
const int nthreads,
const T* top_diff,
const T spatial_scale,
const int channels,
const int height,
const int width,
const int pooled_height,
const int pooled_width,
const int sampling_ratio,
T* bottom_diff,
const T* bottom_rois,
bool continuous_coordinate) {
CUDA_1D_KERNEL_LOOP(index, nthreads) {
// (n, c, ph, pw) is an element in the pooled output
int pw = index % pooled_width;
int ph = (index / pooled_width) % pooled_height;
int c = (index / pooled_width / pooled_height) % channels;
int n = index / pooled_width / pooled_height / channels;
const T* offset_bottom_rois = bottom_rois + n * 6;
int roi_batch_ind = offset_bottom_rois[0];
// Do not round
T roi_offset = continuous_coordinate ? T(0.5) : 0;
T roi_center_w = offset_bottom_rois[1] * spatial_scale - roi_offset;
T roi_center_h = offset_bottom_rois[2] * spatial_scale - roi_offset;
T roi_width = offset_bottom_rois[3] * spatial_scale;
T roi_height = offset_bottom_rois[4] * spatial_scale;
T theta = offset_bottom_rois[5] * M_PI / 180.0;
if (!continuous_coordinate) { // backward compatibility
// Force malformed ROIs to be 1x1
roi_width = c10::cuda::compat::max(roi_width, (T)1.);
roi_height = c10::cuda::compat::max(roi_height, (T)1.);
}
T bin_size_h = static_cast<T>(roi_height) / static_cast<T>(pooled_height);
T bin_size_w = static_cast<T>(roi_width) / static_cast<T>(pooled_width);
T* offset_bottom_diff =
bottom_diff + (roi_batch_ind * channels + c) * height * width;
int top_offset = (n * channels + c) * pooled_height * pooled_width;
const T* offset_top_diff = top_diff + top_offset;
const T top_diff_this_bin = offset_top_diff[ph * pooled_width + pw];
// We use roi_bin_grid to sample the grid and mimic integral
int roi_bin_grid_h = (sampling_ratio > 0)
? sampling_ratio
: ceil(roi_height / pooled_height); // e.g., = 2
int roi_bin_grid_w =
(sampling_ratio > 0) ? sampling_ratio : ceil(roi_width / pooled_width);
// roi_start_h and roi_start_w are computed wrt the center of RoI (x, y).
// Appropriate translation needs to be applied after.
T roi_start_h = -roi_height / 2.0;
T roi_start_w = -roi_width / 2.0;
T cosTheta = cos(theta);
T sinTheta = sin(theta);
// We do average (integral) pooling inside a bin
const T count = roi_bin_grid_h * roi_bin_grid_w; // e.g. = 4
for (int iy = 0; iy < roi_bin_grid_h; iy++) // e.g., iy = 0, 1
{
const T yy = roi_start_h + ph * bin_size_h +
static_cast<T>(iy + .5f) * bin_size_h /
static_cast<T>(roi_bin_grid_h); // e.g., 0.5, 1.5
for (int ix = 0; ix < roi_bin_grid_w; ix++) {
const T xx = roi_start_w + pw * bin_size_w +
static_cast<T>(ix + .5f) * bin_size_w /
static_cast<T>(roi_bin_grid_w);
// Rotate by theta around the center and translate
T x = xx * cosTheta + yy * sinTheta + roi_center_w;
T y = yy * cosTheta - xx * sinTheta + roi_center_h;
T w1, w2, w3, w4;
int x_low, x_high, y_low, y_high;
bilinear_interpolate_gradient(
height,
width,
y,
x,
w1,
w2,
w3,
w4,
x_low,
x_high,
y_low,
y_high);
T g1 = top_diff_this_bin * w1 / count;
T g2 = top_diff_this_bin * w2 / count;
T g3 = top_diff_this_bin * w3 / count;
T g4 = top_diff_this_bin * w4 / count;
if (x_low >= 0 && x_high >= 0 && y_low >= 0 && y_high >= 0) {
gpu_atomic_add(
offset_bottom_diff + y_low * width + x_low, static_cast<T>(g1));
gpu_atomic_add(
offset_bottom_diff + y_low * width + x_high, static_cast<T>(g2));
gpu_atomic_add(
offset_bottom_diff + y_high * width + x_low, static_cast<T>(g3));
gpu_atomic_add(
offset_bottom_diff + y_high * width + x_high, static_cast<T>(g4));
} // if
} // ix
} // iy
} // CUDA_1D_KERNEL_LOOP
} // RoIAlignRotatedBackward
} // namespace
template <>
C10_EXPORT bool RoIAlignRotatedGradientOp<float, CUDAContext>::RunOnDevice() {
auto& X = Input(0); // Input data to pool
auto& R = Input(1); // RoIs
auto& dY = Input(2); // Gradient of net w.r.t. output of "forward" op
// (aka "gradOutput")
auto* dX = Output(
0, X.sizes(), at::dtype<float>()); // Gradient of net w.r.t. input to
// "forward" op (aka "gradInput")
// Must zero-out dX before accumulating gradients
math::Set<float, CUDAContext>(
dX->numel(), 0.f, dX->mutable_data<float>(), &context_);
if (dY.numel() > 0) { // Handle possibly empty gradient if there were no rois
RoIAlignRotatedBackward<float>
<<<CAFFE_GET_BLOCKS(dY.numel()),
CAFFE_CUDA_NUM_THREADS,
0,
context_.cuda_stream()>>>(
dY.numel(),
dY.data<float>(),
spatial_scale_,
X.dim32(1),
X.dim32(2),
X.dim32(3),
pooled_height_,
pooled_width_,
sampling_ratio_,
dX->mutable_data<float>(),
R.data<float>(),
aligned_);
C10_CUDA_KERNEL_LAUNCH_CHECK();
}
return true;
}
REGISTER_CUDA_OPERATOR(
RoIAlignRotatedGradient,
RoIAlignRotatedGradientOp<float, CUDAContext>);
} // namespace caffe2
|