1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433
|
#ifdef _MSC_VER
#ifndef _USE_MATH_DEFINES
#define _USE_MATH_DEFINES // For M_PI
#endif
#endif // _MSC_VER
#include <cmath>
#include "roi_align_rotated_op.h"
#include "caffe2/utils/eigen_utils.h"
#include "caffe2/utils/math.h"
namespace caffe2 {
namespace {
template <typename T>
struct PreCalc {
int pos1;
int pos2;
int pos3;
int pos4;
T w1;
T w2;
T w3;
T w4;
};
template <typename T>
void pre_calc_for_bilinear_interpolate(
const int height,
const int width,
const int pooled_height,
const int pooled_width,
const int iy_upper,
const int ix_upper,
T roi_start_h,
T roi_start_w,
T bin_size_h,
T bin_size_w,
int roi_bin_grid_h,
int roi_bin_grid_w,
T roi_center_h,
T roi_center_w,
T theta,
std::vector<PreCalc<T>>& pre_calc) {
int pre_calc_index = 0;
T cosTheta = cos(theta);
T sinTheta = sin(theta);
for (int ph = 0; ph < pooled_height; ph++) {
for (int pw = 0; pw < pooled_width; pw++) {
for (int iy = 0; iy < iy_upper; iy++) {
const T yy = roi_start_h + ph * bin_size_h +
// NOLINTNEXTLINE(cppcoreguidelines-narrowing-conversions,bugprone-narrowing-conversions)
static_cast<T>(iy + .5f) * bin_size_h /
static_cast<T>(roi_bin_grid_h); // e.g., 0.5, 1.5
for (int ix = 0; ix < ix_upper; ix++) {
const T xx = roi_start_w + pw * bin_size_w +
// NOLINTNEXTLINE(cppcoreguidelines-narrowing-conversions,bugprone-narrowing-conversions)
static_cast<T>(ix + .5f) * bin_size_w /
static_cast<T>(roi_bin_grid_w);
// Rotate by theta around the center and translate
T x = xx * cosTheta + yy * sinTheta + roi_center_w;
T y = yy * cosTheta - xx * sinTheta + roi_center_h;
// deal with: inverse elements are out of feature map boundary
if (y < -1.0 || y > height || x < -1.0 || x > width) {
// empty
// NOLINTNEXTLINE(cppcoreguidelines-pro-type-member-init)
PreCalc<T> pc;
pc.pos1 = 0;
pc.pos2 = 0;
pc.pos3 = 0;
pc.pos4 = 0;
pc.w1 = 0;
pc.w2 = 0;
pc.w3 = 0;
pc.w4 = 0;
pre_calc[pre_calc_index] = pc;
pre_calc_index += 1;
continue;
}
if (y <= 0) {
y = 0;
}
if (x <= 0) {
x = 0;
}
int y_low = (int)y;
int x_low = (int)x;
// NOLINTNEXTLINE(cppcoreguidelines-init-variables)
int y_high;
// NOLINTNEXTLINE(cppcoreguidelines-init-variables)
int x_high;
if (y_low >= height - 1) {
y_high = y_low = height - 1;
y = (T)y_low;
} else {
y_high = y_low + 1;
}
if (x_low >= width - 1) {
x_high = x_low = width - 1;
x = (T)x_low;
} else {
x_high = x_low + 1;
}
T ly = y - y_low;
T lx = x - x_low;
T hy = 1. - ly, hx = 1. - lx;
T w1 = hy * hx, w2 = hy * lx, w3 = ly * hx, w4 = ly * lx;
// Save weights and indices
// NOLINTNEXTLINE(cppcoreguidelines-pro-type-member-init)
PreCalc<T> pc;
pc.pos1 = y_low * width + x_low;
pc.pos2 = y_low * width + x_high;
pc.pos3 = y_high * width + x_low;
pc.pos4 = y_high * width + x_high;
pc.w1 = w1;
pc.w2 = w2;
pc.w3 = w3;
pc.w4 = w4;
pre_calc[pre_calc_index] = pc;
pre_calc_index += 1;
}
}
}
}
}
template <typename T>
void ROIAlignRotatedForward(
const int nthreads,
const T* bottom_data,
const T& spatial_scale,
const int channels,
const int height,
const int width,
const int pooled_height,
const int pooled_width,
const int sampling_ratio,
const T* bottom_rois,
int roi_cols,
T* top_data,
StorageOrder order,
bool continuous_coordinate) {
DCHECK(roi_cols == 5 || roi_cols == 6);
int n_rois = nthreads / channels / pooled_width / pooled_height;
#ifdef _OPENMP
#pragma omp parallel for
#endif
for (int n = 0; n < n_rois; n++) {
int index_n = n * channels * pooled_width * pooled_height;
// roi could have 5 or 6 columns
const T* offset_bottom_rois = bottom_rois + n * roi_cols;
int roi_batch_ind = 0;
if (roi_cols == 6) {
roi_batch_ind = offset_bottom_rois[0];
offset_bottom_rois++;
}
// Do not round
T roi_offset = continuous_coordinate ? T(0.5) : 0;
T roi_center_w = offset_bottom_rois[0] * spatial_scale - roi_offset;
T roi_center_h = offset_bottom_rois[1] * spatial_scale - roi_offset;
T roi_width = offset_bottom_rois[2] * spatial_scale;
T roi_height = offset_bottom_rois[3] * spatial_scale;
T theta = offset_bottom_rois[4] * M_PI / 180.0;
if (continuous_coordinate) {
CAFFE_ENFORCE(
roi_width >= 0 && roi_height >= 0,
"ROIs in ROIAlign do not have non-negative size!");
} else { // backward compatibility
// Force malformed ROIs to be 1x1
roi_width = std::max(roi_width, (T)1.);
roi_height = std::max(roi_height, (T)1.);
}
T bin_size_h = static_cast<T>(roi_height) / static_cast<T>(pooled_height);
T bin_size_w = static_cast<T>(roi_width) / static_cast<T>(pooled_width);
// We use roi_bin_grid to sample the grid and mimic integral
int roi_bin_grid_h = (sampling_ratio > 0)
? sampling_ratio
: ceil(roi_height / pooled_height); // e.g., = 2
int roi_bin_grid_w =
(sampling_ratio > 0) ? sampling_ratio : ceil(roi_width / pooled_width);
// We do average (integral) pooling inside a bin
const T count = roi_bin_grid_h * roi_bin_grid_w; // e.g. = 4
// We want to precalculate indices and weights shared by all channels,
// this is the key point of optimization.
std::vector<PreCalc<T>> pre_calc(
roi_bin_grid_h * roi_bin_grid_w * pooled_width * pooled_height);
// roi_start_h and roi_start_w are computed wrt the center of RoI (x, y).
// Appropriate translation needs to be applied after.
T roi_start_h = -roi_height / 2.0;
T roi_start_w = -roi_width / 2.0;
pre_calc_for_bilinear_interpolate(
height,
width,
pooled_height,
pooled_width,
roi_bin_grid_h,
roi_bin_grid_w,
roi_start_h,
roi_start_w,
bin_size_h,
bin_size_w,
roi_bin_grid_h,
roi_bin_grid_w,
roi_center_h,
roi_center_w,
theta,
pre_calc);
if (order == StorageOrder::NCHW) {
for (int c = 0; c < channels; c++) {
int index_n_c = index_n + c * pooled_width * pooled_height;
const T* offset_bottom_data =
bottom_data + (roi_batch_ind * channels + c) * height * width;
int pre_calc_index = 0;
for (int ph = 0; ph < pooled_height; ph++) {
for (int pw = 0; pw < pooled_width; pw++) {
int index = index_n_c + ph * pooled_width + pw;
T output_val = 0.;
for (int iy = 0; iy < roi_bin_grid_h; iy++) {
for (int ix = 0; ix < roi_bin_grid_w; ix++) {
PreCalc<T> pc = pre_calc[pre_calc_index];
output_val += pc.w1 * offset_bottom_data[pc.pos1] +
pc.w2 * offset_bottom_data[pc.pos2] +
pc.w3 * offset_bottom_data[pc.pos3] +
pc.w4 * offset_bottom_data[pc.pos4];
pre_calc_index += 1;
}
}
output_val /= count;
top_data[index] = output_val;
} // for pw
} // for ph
} // for c
} // if nchw
if (order == StorageOrder::NHWC) {
const T* offset_bottom_data =
bottom_data + roi_batch_ind * channels * height * width;
int pre_calc_index = 0;
for (int ph = 0; ph < pooled_height; ph++) {
for (int pw = 0; pw < pooled_width; pw++) {
EVecXf output_vals = EVecXf::Zero(channels);
for (int iy = 0; iy < roi_bin_grid_h; iy++) {
for (int ix = 0; ix < roi_bin_grid_w; ix++) {
PreCalc<T> pc = pre_calc[pre_calc_index];
ConstEigenVectorMap<T> data_1(
offset_bottom_data + channels * pc.pos1, channels);
ConstEigenVectorMap<T> data_2(
offset_bottom_data + channels * pc.pos2, channels);
ConstEigenVectorMap<T> data_3(
offset_bottom_data + channels * pc.pos3, channels);
ConstEigenVectorMap<T> data_4(
offset_bottom_data + channels * pc.pos4, channels);
output_vals += pc.w1 * data_1 + pc.w2 * data_2 + pc.w3 * data_3 +
pc.w4 * data_4;
pre_calc_index += 1;
}
}
output_vals /= count;
int index_nhw = index_n + (ph * pooled_width + pw) * channels;
std::memcpy(
top_data + index_nhw, output_vals.data(), channels * sizeof(T));
} // for pw
} // for ph
} // if nhwc
} // for n
}
} // namespace
template <>
C10_EXPORT bool RoIAlignRotatedOp<float, CPUContext>::RunOnDevice() {
auto& X = Input(0); // Input data to pool
auto& R = Input(1); // RoIs
if (R.numel() == 0) {
std::vector<int64_t> sizes;
// Handle empty rois
if (order_ == StorageOrder::NCHW) {
sizes = {0, X.dim32(1), pooled_height_, pooled_width_};
} else if (order_ == StorageOrder::NHWC) {
sizes = {0, pooled_height_, pooled_width_, X.dim32(3)};
}
// Output tensor is inititalized with proper sizes and data type
Output(0, sizes, at::dtype<float>());
return true;
}
CAFFE_ENFORCE_EQ(R.dim(), 2);
// Each element of R is [batch_id center_x center_y width height angle].
// If R has 6 columns, the first column is the index, otherwise 0.
CAFFE_ENFORCE(R.dim32(1) == 5 || R.dim32(1) == 6);
assert(sampling_ratio_ >= 0);
if (order_ == StorageOrder::NCHW) {
auto* Y = Output(
0,
{R.dim32(0), X.dim32(1), pooled_height_, pooled_width_},
at::dtype<float>()); // RoI pooled data
size_t output_size = Y->numel();
ROIAlignRotatedForward<float>(
output_size,
X.data<float>(),
spatial_scale_,
X.dim32(1),
X.dim32(2),
X.dim32(3),
pooled_height_,
pooled_width_,
sampling_ratio_,
R.data<float>(),
R.dim32(1),
Y->mutable_data<float>(),
order_,
aligned_);
} else if (order_ == StorageOrder::NHWC) {
auto* Y = Output(
0,
{R.dim32(0), pooled_height_, pooled_width_, X.dim32(3)},
at::dtype<float>()); // RoI pooled data
size_t output_size = Y->numel();
ROIAlignRotatedForward<float>(
output_size,
X.data<float>(),
spatial_scale_,
X.dim32(3),
X.dim32(1),
X.dim32(2),
pooled_height_,
pooled_width_,
sampling_ratio_,
R.data<float>(),
R.dim32(1),
Y->mutable_data<float>(),
order_,
aligned_);
}
return true;
}
REGISTER_CPU_OPERATOR(RoIAlignRotated, RoIAlignRotatedOp<float, CPUContext>);
// Input: X, rois; Output: Y
OPERATOR_SCHEMA(RoIAlignRotated)
.NumInputs(2)
.NumOutputs(1)
.SetDoc(R"DOC(
Similar to RoIAlign but can handle rotated region proposals.
Based on https://arxiv.org/abs/1703.01086.
)DOC")
.Arg(
"spatial_scale",
"(float) default 1.0; Spatial scale of the input feature map X "
"relative to the input image. E.g., 0.0625 if X has a stride of 16 "
"w.r.t. the input image.")
.Arg("pooled_h", "(int) default 1; Pooled output Y's height.")
.Arg("pooled_w", "(int) default 1; Pooled output Y's width.")
.Arg(
"sampling_ratio",
"(int) default -1; number of sampling points in the interpolation grid "
"used to compute the output value of each pooled output bin. If > 0, "
"then exactly sampling_ratio x sampling_ratio grid points are used. If "
"<= 0, then an adaptive number of grid points are used (computed as "
"ceil(roi_width / pooled_w), and likewise for height).")
.Input(0, "X", "4D feature map input of shape (N, C, H, W).")
.Input(
1,
"RoIs",
"2D input of shape (R, 5 or 6) specifying R RoIs "
"representing: batch index in [0, N - 1], center_x, center_y, width, "
"height, angle. The RoI coordinates are in the coordinate system of "
"the input image. `angle` should be specified in degrees and "
"represents the RoI rotated counter-clockwise. For inputs "
"corresponding to a single image, batch index can be excluded to "
"have just 5 columns.")
.Output(
0,
"Y",
"4D output of shape (R, C, pooled_h, pooled_w). The r-th batch element "
"is a pooled feature map cooresponding to the r-th RoI.");
} // namespace caffe2
using RoIAlignRotatedOpFloatCPU =
caffe2::RoIAlignRotatedOp<float, caffe2::CPUContext>;
// clang-format off
C10_EXPORT_CAFFE2_OP_TO_C10_CPU(
RoIAlignRotated,
"_caffe2::RoIAlignRotated("
"Tensor features, "
"Tensor rois, "
"str order, "
"float spatial_scale, "
"int pooled_h, "
"int pooled_w, "
"int sampling_ratio, "
"bool aligned"
") -> Tensor",
RoIAlignRotatedOpFloatCPU);
// clang-format on
|