File: roi_pool_op.cc

package info (click to toggle)
pytorch 1.13.1%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 139,252 kB
  • sloc: cpp: 1,100,274; python: 706,454; ansic: 83,052; asm: 7,618; java: 3,273; sh: 2,841; javascript: 612; makefile: 323; xml: 269; ruby: 185; yacc: 144; objc: 68; lex: 44
file content (211 lines) | stat: -rw-r--r-- 7,839 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
#include "roi_pool_op.h"

#include <cfloat>

namespace caffe2 {

using std::max;
using std::min;

template <>
C10_EXPORT bool RoIPoolOp<float, CPUContext>::RunOnDevice() {
  const auto& X = Input(0); // Input data to pool
  const auto& R = Input(1); // RoIs
  auto* Y = Output(0); // RoI pooled data
  auto* A = is_test_ ? nullptr : Output(1); // argmaxes

  // Each ROI is of the form [batch_index x1 y1 x2 y2]
  CAFFE_ENFORCE_EQ(R.dim32(1), 5);

  // TODO: Handle the storage_order properly to get the NCWH.
  int batch_size = X.dim32(0);
  int channels = X.dim32(1);
  int height = X.dim32(2);
  int width = X.dim32(3);
  int num_rois = R.dim32(0);

  Y->Resize(num_rois, channels, pooled_height_, pooled_width_);
  if (!is_test_) {
    A->Resize(Y->sizes());
  }

  const float* Xdata = X.data<float>();
  const float* rois = R.data<float>();
  float* Ydata = Y->template mutable_data<float>();
  int* argmax_data = is_test_ ? nullptr : A->template mutable_data<int>();

  // For each ROI R = [batch_index x1 y1 x2 y2]: max pool over R
  for (int n = 0; n < num_rois; ++n) {
    // NOLINTNEXTLINE(bugprone-narrowing-conversions,cppcoreguidelines-narrowing-conversions)
    int roi_batch_id = rois[0];
    // NOLINTNEXTLINE(bugprone-narrowing-conversions,cppcoreguidelines-narrowing-conversions)
    int roi_start_w = round(rois[1] * spatial_scale_);
    // NOLINTNEXTLINE(bugprone-narrowing-conversions,cppcoreguidelines-narrowing-conversions)
    int roi_start_h = round(rois[2] * spatial_scale_);
    // NOLINTNEXTLINE(bugprone-narrowing-conversions,cppcoreguidelines-narrowing-conversions)
    int roi_end_w = round(rois[3] * spatial_scale_);
    // NOLINTNEXTLINE(bugprone-narrowing-conversions,cppcoreguidelines-narrowing-conversions)
    int roi_end_h = round(rois[4] * spatial_scale_);
    CAFFE_ENFORCE_GE(roi_batch_id, 0);
    CAFFE_ENFORCE_LT(roi_batch_id, batch_size);

    // Force malformed ROIs to be 1x1
    int roi_height = max(roi_end_h - roi_start_h + 1, 1);
    int roi_width = max(roi_end_w - roi_start_w + 1, 1);

    const float bin_size_h =
        static_cast<float>(roi_height) / static_cast<float>(pooled_height_);
    const float bin_size_w =
        static_cast<float>(roi_width) / static_cast<float>(pooled_width_);

    const float* batch_data = Xdata + roi_batch_id * X.size_from_dim(1);

    for (int c = 0; c < channels; ++c) {
      for (int ph = 0; ph < pooled_height_; ++ph) {
        for (int pw = 0; pw < pooled_width_; ++pw) {
          // Compute pooling region for this output unit:
          //  start (included) = floor(ph * roi_height / pooled_height_)
          //  end (excluded) = ceil((ph + 1) * roi_height / pooled_height_)
          int hstart =
              static_cast<int>(floor(static_cast<float>(ph) * bin_size_h));
          int wstart =
              static_cast<int>(floor(static_cast<float>(pw) * bin_size_w));
          int hend =
              static_cast<int>(ceil(static_cast<float>(ph + 1) * bin_size_h));
          int wend =
              static_cast<int>(ceil(static_cast<float>(pw + 1) * bin_size_w));

          // Add roi offsets and clip to input boundaries
          hstart = min(max(hstart + roi_start_h, 0), height);
          hend = min(max(hend + roi_start_h, 0), height);
          wstart = min(max(wstart + roi_start_w, 0), width);
          wend = min(max(wend + roi_start_w, 0), width);

          const int pool_index = ph * pooled_width_ + pw;

          // Define an empty pooling region to be zero
          bool is_empty = (hend <= hstart) || (wend <= wstart);
          Ydata[pool_index] = is_empty ? 0 : -FLT_MAX;
          if (!is_test_) {
            // If nothing is pooled, argmax = -1 causes nothing to be backprop'd
            argmax_data[pool_index] = -1;
          }

          for (int h = hstart; h < hend; ++h) {
            for (int w = wstart; w < wend; ++w) {
              const int index = h * width + w;
              if (batch_data[index] > Ydata[pool_index]) {
                Ydata[pool_index] = batch_data[index];
                if (!is_test_) {
                  argmax_data[pool_index] = index;
                }
              }
            }
          }
        }
      }
      // Increment all data pointers by one channel
      batch_data += X.size_from_dim(2);
      Ydata += Y->size_from_dim(2);
      if (!is_test_) {
        argmax_data += A->size_from_dim(2);
      }
    }
    // Increment ROI data pointer
    rois += R.size_from_dim(1);
  }

  return true;
}

REGISTER_CPU_OPERATOR(RoIPool, RoIPoolOp<float, CPUContext>);
REGISTER_CPU_OPERATOR(RoIPoolGradient, RoIPoolGradientOp<float, CPUContext>);

// Input: X, rois
// Output case #1: Y, argmaxes (train mode)
// Output case #2: Y           (test mode)
OPERATOR_SCHEMA(RoIPool)
    .NumInputs(2)
    .NumOutputs({1, 2})
    .TensorInferenceFunction([](const OperatorDef& def,
                                const vector<TensorShape>& in) {
      ArgumentHelper helper(def);
      const StorageOrder order = StringToStorageOrder(
          helper.GetSingleArgument<string>("order", "NCHW"));
      const TensorShape& X = in[0];
      const int num_channels =
          (order == StorageOrder::NCHW ? X.dims(1) : X.dims(3));
      const TensorShape& R = in[1];
      const int num_rois = R.dims(0);
      const int pooled_height = helper.GetSingleArgument<int>("pooled_h", 1);
      const int pooled_width = helper.GetSingleArgument<int>("pooled_w", 1);
      TensorShape Y = CreateTensorShape(
          vector<int>({num_rois, num_channels, pooled_height, pooled_width}),
          X.data_type());

      bool is_test = helper.GetSingleArgument<int>(OpSchema::Arg_IsTest, 0);
      if (!is_test) {
        TensorShape argmaxes = Y;
        argmaxes.set_data_type(TensorProto_DataType_INT32);
        return vector<TensorShape>({Y, argmaxes});
      } else {
        return vector<TensorShape>({Y});
      }
    })
    .SetDoc(R"DOC(
Carries out ROI Pooling for Faster-RCNN.
Depending on the mode, there are multiple output cases:

  Output case #1: Y, argmaxes (train mode)
  Output case #2: Y           (test mode)
)DOC")
    .Arg(
        "is_test",
        "If set, run in test mode and skip computation of argmaxes (used for "
        "gradient computation). Only one output tensor is produced. "
        "(Default: false).")
    .Arg("order", "A StorageOrder string (Default: \"NCHW\").")
    .Arg("pooled_h", "The pooled output height (Default: 1).")
    .Arg("pooled_w", "The pooled output width (Default: 1).")
    .Arg(
        "spatial_scale",
        "Multiplicative spatial scale factor to translate ROI coords from "
        "their input scale to the scale used when pooling (Default: 1.0).")
    .Input(
        0,
        "X",
        "The input 4-D tensor of data. Only NCHW order is currently supported.")
    .Input(
        1,
        "rois",
        "RoIs (Regions of Interest) to pool over. Should be a 2-D tensor of "
        "shape (num_rois, 5) given as [[batch_id, x1, y1, x2, y2], ...].")
    .Output(
        0,
        "Y",
        "RoI pooled output 4-D tensor of shape "
        "(num_rois, channels, pooled_h, pooled_w).")
    .Output(
        1,
        "argmaxes",
        "Argmaxes corresponding to indices in X used for gradient computation. "
        "Only output if arg \"is_test\" is false.");

// Input: X, rois, argmaxes, dY (aka "gradOutput")
// Output: dX (aka "gradInput")
OPERATOR_SCHEMA(RoIPoolGradient).NumInputs(4).NumOutputs(1);

class GetRoIPoolGradient : public GradientMakerBase {
  using GradientMakerBase::GradientMakerBase;
  vector<OperatorDef> GetGradientDefs() override {
    return SingleGradientDef(
        "RoIPoolGradient",
        "",
        vector<string>{I(0), I(1), O(1), GO(0)},
        vector<string>{GI(0)});
  }
};

REGISTER_GRADIENT(RoIPool, GetRoIPoolGradient);

} // namespace caffe2