1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200
|
#include <cfloat>
#include "caffe2/core/context_gpu.h"
#include "caffe2/operators/roi_pool_op.h"
#include "caffe2/utils/GpuAtomics.cuh"
namespace caffe2 {
namespace {
template <typename T>
__global__ void ROIPoolForward(
const int nthreads,
const T* bottom_data,
const T spatial_scale,
const int channels,
const int height,
const int width,
const int pooled_height,
const int pooled_width,
const T* bottom_rois,
T* top_data,
int* argmax_data) {
CUDA_1D_KERNEL_LOOP(index, nthreads) {
// (n, c, ph, pw) is an element in the pooled output
int pw = index % pooled_width;
int ph = (index / pooled_width) % pooled_height;
int c = (index / pooled_width / pooled_height) % channels;
int n = index / pooled_width / pooled_height / channels;
const T* offset_bottom_rois = bottom_rois + n * 5;
int roi_batch_ind = offset_bottom_rois[0];
int roi_start_w = roundf(offset_bottom_rois[1] * spatial_scale);
int roi_start_h = roundf(offset_bottom_rois[2] * spatial_scale);
int roi_end_w = roundf(offset_bottom_rois[3] * spatial_scale);
int roi_end_h = roundf(offset_bottom_rois[4] * spatial_scale);
// Force malformed ROIs to be 1x1
int roi_width = max(roi_end_w - roi_start_w + 1, 1);
int roi_height = max(roi_end_h - roi_start_h + 1, 1);
T bin_size_h = static_cast<T>(roi_height) / static_cast<T>(pooled_height);
T bin_size_w = static_cast<T>(roi_width) / static_cast<T>(pooled_width);
int hstart = static_cast<int>(floor(static_cast<T>(ph) * bin_size_h));
int wstart = static_cast<int>(floor(static_cast<T>(pw) * bin_size_w));
int hend = static_cast<int>(ceil(static_cast<T>(ph + 1) * bin_size_h));
int wend = static_cast<int>(ceil(static_cast<T>(pw + 1) * bin_size_w));
// Add roi offsets and clip to input boundaries
hstart = min(max(hstart + roi_start_h, 0), height);
hend = min(max(hend + roi_start_h, 0), height);
wstart = min(max(wstart + roi_start_w, 0), width);
wend = min(max(wend + roi_start_w, 0), width);
bool is_empty = (hend <= hstart) || (wend <= wstart);
// Define an empty pooling region to be zero
T maxval = is_empty ? 0 : -FLT_MAX;
// If nothing is pooled, argmax = -1 causes nothing to be backprop'd
int maxidx = -1;
const T* offset_bottom_data =
bottom_data + (roi_batch_ind * channels + c) * height * width;
for (int h = hstart; h < hend; ++h) {
for (int w = wstart; w < wend; ++w) {
int bottom_index = h * width + w;
if (offset_bottom_data[bottom_index] > maxval) {
maxval = offset_bottom_data[bottom_index];
maxidx = bottom_index;
}
}
}
top_data[index] = maxval;
if (argmax_data) {
argmax_data[index] = maxidx;
}
}
}
template <typename T>
__global__ void ROIPoolBackward(
const int nthreads,
const T* top_diff,
const int* argmax_data,
const int channels,
const int height,
const int width,
const int pooled_height,
const int pooled_width,
T* bottom_diff,
const T* bottom_rois) {
CUDA_1D_KERNEL_LOOP(index, nthreads) {
// (n, c, ph, pw) is an element in the pooled output
const int pw = index % pooled_width;
const int ph = (index / pooled_width) % pooled_height;
const int c = (index / pooled_width / pooled_height) % channels;
const int n = index / pooled_width / pooled_height / channels;
const T* offset_bottom_rois = bottom_rois + n * 5;
int roi_batch_ind = offset_bottom_rois[0];
int bottom_offset = (roi_batch_ind * channels + c) * height * width;
int top_offset = (n * channels + c) * pooled_height * pooled_width;
const T* offset_top_diff = top_diff + top_offset;
T* offset_bottom_diff = bottom_diff + bottom_offset;
const int* offset_argmax_data = argmax_data + top_offset;
int argmax = offset_argmax_data[ph * pooled_width + pw];
if (argmax != -1) {
gpu_atomic_add(
offset_bottom_diff + argmax,
static_cast<T>(offset_top_diff[ph * pooled_width + pw]));
}
}
}
} // namespace
template <>
bool RoIPoolOp<float, CUDAContext>::RunOnDevice() {
auto& X = Input(0); // Input data to pool
auto& R = Input(1); // RoIs
auto* Y = Output(0); // RoI pooled data
auto* A = is_test_ ? nullptr : Output(1); // argmaxes
// Handle empty rois
if (R.numel() == 0) {
Y->Resize(0, X.dim32(1), pooled_height_, pooled_width_);
// mutable_data calls are needed to allocate the tensors
Y->template mutable_data<float>();
if (!is_test_) {
A->Resize(Y->sizes());
A->template mutable_data<int>();
}
return true;
}
Y->Resize(R.dim32(0), X.dim32(1), pooled_height_, pooled_width_);
if (!is_test_) {
A->Resize(Y->sizes());
}
int output_size = Y->numel();
int* argmax_data = is_test_ ? nullptr : A->template mutable_data<int>();
ROIPoolForward<float>
<<<CAFFE_GET_BLOCKS(output_size),
CAFFE_CUDA_NUM_THREADS,
0,
context_.cuda_stream()>>>(
output_size,
X.data<float>(),
spatial_scale_,
X.dim32(1),
X.dim32(2),
X.dim32(3),
pooled_height_,
pooled_width_,
R.data<float>(),
Y->template mutable_data<float>(),
argmax_data);
C10_CUDA_KERNEL_LAUNCH_CHECK();
return true;
}
template <>
C10_EXPORT bool RoIPoolGradientOp<float, CUDAContext>::RunOnDevice() {
auto& X = Input(0); // Input data to pool
auto& R = Input(1); // RoIs
auto& A = Input(2); // argmaxes
auto& dY = Input(3); // Gradient of net w.r.t. output of "forward" op
// (aka "gradOutput")
auto* dX = Output(
0, X.sizes(), at::dtype<float>()); // Gradient of net w.r.t. input to
// "forward" op (aka "gradInput")
// Must zero-out dX before accumulating gradients
math::Set<float, CUDAContext>(
dX->numel(), 0.f, dX->template mutable_data<float>(), &context_);
if (dY.numel() > 0) { // Handle possibly empty gradient if there were no rois
ROIPoolBackward<float>
<<<CAFFE_GET_BLOCKS(dY.numel()),
CAFFE_CUDA_NUM_THREADS,
0,
context_.cuda_stream()>>>(
dY.numel(),
dY.data<float>(),
A.data<int>(),
X.dim32(1),
X.dim32(2),
X.dim32(3),
pooled_height_,
pooled_width_,
dX->template mutable_data<float>(),
R.data<float>());
C10_CUDA_KERNEL_LAUNCH_CHECK();
}
return true;
}
REGISTER_CUDA_OPERATOR(RoIPool, RoIPoolOp<float, CUDAContext>);
REGISTER_CUDA_OPERATOR(RoIPoolGradient, RoIPoolGradientOp<float, CUDAContext>);
} // namespace caffe2
|