File: roi_pool_op.cu

package info (click to toggle)
pytorch 1.13.1%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 139,252 kB
  • sloc: cpp: 1,100,274; python: 706,454; ansic: 83,052; asm: 7,618; java: 3,273; sh: 2,841; javascript: 612; makefile: 323; xml: 269; ruby: 185; yacc: 144; objc: 68; lex: 44
file content (200 lines) | stat: -rw-r--r-- 6,739 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
#include <cfloat>

#include "caffe2/core/context_gpu.h"
#include "caffe2/operators/roi_pool_op.h"
#include "caffe2/utils/GpuAtomics.cuh"

namespace caffe2 {

namespace {

template <typename T>
__global__ void ROIPoolForward(
    const int nthreads,
    const T* bottom_data,
    const T spatial_scale,
    const int channels,
    const int height,
    const int width,
    const int pooled_height,
    const int pooled_width,
    const T* bottom_rois,
    T* top_data,
    int* argmax_data) {
  CUDA_1D_KERNEL_LOOP(index, nthreads) {
    // (n, c, ph, pw) is an element in the pooled output
    int pw = index % pooled_width;
    int ph = (index / pooled_width) % pooled_height;
    int c = (index / pooled_width / pooled_height) % channels;
    int n = index / pooled_width / pooled_height / channels;

    const T* offset_bottom_rois = bottom_rois + n * 5;
    int roi_batch_ind = offset_bottom_rois[0];
    int roi_start_w = roundf(offset_bottom_rois[1] * spatial_scale);
    int roi_start_h = roundf(offset_bottom_rois[2] * spatial_scale);
    int roi_end_w = roundf(offset_bottom_rois[3] * spatial_scale);
    int roi_end_h = roundf(offset_bottom_rois[4] * spatial_scale);

    // Force malformed ROIs to be 1x1
    int roi_width = max(roi_end_w - roi_start_w + 1, 1);
    int roi_height = max(roi_end_h - roi_start_h + 1, 1);
    T bin_size_h = static_cast<T>(roi_height) / static_cast<T>(pooled_height);
    T bin_size_w = static_cast<T>(roi_width) / static_cast<T>(pooled_width);

    int hstart = static_cast<int>(floor(static_cast<T>(ph) * bin_size_h));
    int wstart = static_cast<int>(floor(static_cast<T>(pw) * bin_size_w));
    int hend = static_cast<int>(ceil(static_cast<T>(ph + 1) * bin_size_h));
    int wend = static_cast<int>(ceil(static_cast<T>(pw + 1) * bin_size_w));

    // Add roi offsets and clip to input boundaries
    hstart = min(max(hstart + roi_start_h, 0), height);
    hend = min(max(hend + roi_start_h, 0), height);
    wstart = min(max(wstart + roi_start_w, 0), width);
    wend = min(max(wend + roi_start_w, 0), width);
    bool is_empty = (hend <= hstart) || (wend <= wstart);

    // Define an empty pooling region to be zero
    T maxval = is_empty ? 0 : -FLT_MAX;
    // If nothing is pooled, argmax = -1 causes nothing to be backprop'd
    int maxidx = -1;
    const T* offset_bottom_data =
        bottom_data + (roi_batch_ind * channels + c) * height * width;
    for (int h = hstart; h < hend; ++h) {
      for (int w = wstart; w < wend; ++w) {
        int bottom_index = h * width + w;
        if (offset_bottom_data[bottom_index] > maxval) {
          maxval = offset_bottom_data[bottom_index];
          maxidx = bottom_index;
        }
      }
    }
    top_data[index] = maxval;
    if (argmax_data) {
      argmax_data[index] = maxidx;
    }
  }
}

template <typename T>
__global__ void ROIPoolBackward(
    const int nthreads,
    const T* top_diff,
    const int* argmax_data,
    const int channels,
    const int height,
    const int width,
    const int pooled_height,
    const int pooled_width,
    T* bottom_diff,
    const T* bottom_rois) {
  CUDA_1D_KERNEL_LOOP(index, nthreads) {
    // (n, c, ph, pw) is an element in the pooled output
    const int pw = index % pooled_width;
    const int ph = (index / pooled_width) % pooled_height;
    const int c = (index / pooled_width / pooled_height) % channels;
    const int n = index / pooled_width / pooled_height / channels;

    const T* offset_bottom_rois = bottom_rois + n * 5;
    int roi_batch_ind = offset_bottom_rois[0];
    int bottom_offset = (roi_batch_ind * channels + c) * height * width;
    int top_offset = (n * channels + c) * pooled_height * pooled_width;
    const T* offset_top_diff = top_diff + top_offset;
    T* offset_bottom_diff = bottom_diff + bottom_offset;
    const int* offset_argmax_data = argmax_data + top_offset;

    int argmax = offset_argmax_data[ph * pooled_width + pw];
    if (argmax != -1) {
      gpu_atomic_add(
          offset_bottom_diff + argmax,
          static_cast<T>(offset_top_diff[ph * pooled_width + pw]));
    }
  }
}

} // namespace

template <>
bool RoIPoolOp<float, CUDAContext>::RunOnDevice() {
  auto& X = Input(0); // Input data to pool
  auto& R = Input(1); // RoIs
  auto* Y = Output(0); // RoI pooled data
  auto* A = is_test_ ? nullptr : Output(1); // argmaxes

  // Handle empty rois
  if (R.numel() == 0) {
    Y->Resize(0, X.dim32(1), pooled_height_, pooled_width_);
    // mutable_data calls are needed to allocate the tensors
    Y->template mutable_data<float>();
    if (!is_test_) {
      A->Resize(Y->sizes());
      A->template mutable_data<int>();
    }
    return true;
  }

  Y->Resize(R.dim32(0), X.dim32(1), pooled_height_, pooled_width_);
  if (!is_test_) {
    A->Resize(Y->sizes());
  }
  int output_size = Y->numel();
  int* argmax_data = is_test_ ? nullptr : A->template mutable_data<int>();
  ROIPoolForward<float>
      <<<CAFFE_GET_BLOCKS(output_size),
         CAFFE_CUDA_NUM_THREADS,
         0,
         context_.cuda_stream()>>>(
          output_size,
          X.data<float>(),
          spatial_scale_,
          X.dim32(1),
          X.dim32(2),
          X.dim32(3),
          pooled_height_,
          pooled_width_,
          R.data<float>(),
          Y->template mutable_data<float>(),
          argmax_data);
  C10_CUDA_KERNEL_LAUNCH_CHECK();

  return true;
}

template <>
C10_EXPORT bool RoIPoolGradientOp<float, CUDAContext>::RunOnDevice() {
  auto& X = Input(0); // Input data to pool
  auto& R = Input(1); // RoIs
  auto& A = Input(2); // argmaxes
  auto& dY = Input(3); // Gradient of net w.r.t. output of "forward" op
  // (aka "gradOutput")

  auto* dX = Output(
      0, X.sizes(), at::dtype<float>()); // Gradient of net w.r.t. input to
                                         // "forward" op (aka "gradInput")
  // Must zero-out dX before accumulating gradients
  math::Set<float, CUDAContext>(
      dX->numel(), 0.f, dX->template mutable_data<float>(), &context_);
  if (dY.numel() > 0) { // Handle possibly empty gradient if there were no rois
    ROIPoolBackward<float>
        <<<CAFFE_GET_BLOCKS(dY.numel()),
           CAFFE_CUDA_NUM_THREADS,
           0,
           context_.cuda_stream()>>>(
            dY.numel(),
            dY.data<float>(),
            A.data<int>(),
            X.dim32(1),
            X.dim32(2),
            X.dim32(3),
            pooled_height_,
            pooled_width_,
            dX->template mutable_data<float>(),
            R.data<float>());
    C10_CUDA_KERNEL_LAUNCH_CHECK();
  }
  return true;
}

REGISTER_CUDA_OPERATOR(RoIPool, RoIPoolOp<float, CUDAContext>);
REGISTER_CUDA_OPERATOR(RoIPoolGradient, RoIPoolGradientOp<float, CUDAContext>);

} // namespace caffe2