1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175
|
#include <algorithm>
#include "caffe2/core/context_gpu.h"
#include "caffe2/operators/scale_blobs_op.h"
namespace caffe2 {
template <typename T>
__global__ void ScaleBlobsCUDAKernel(
const float scale,
const int numBlobs,
const int* sizeArr,
T** X,
T** Y) {
for (size_t i = 0; i < numBlobs; ++i) {
CUDA_1D_KERNEL_LOOP(j, sizeArr[i]) {
Y[i][j] = X[i][j] * scale;
}
}
}
template <typename T>
__global__ void ScaleBlobsCUDAKernelManyTensors(
const float scale,
const int* sizeArr,
T** X,
T** Y) {
for (size_t i = threadIdx.x; i < sizeArr[blockIdx.x]; i += blockDim.x) {
Y[blockIdx.x][i] = X[blockIdx.x][i] * scale;
}
}
template <>
template <typename T>
bool ScaleBlobsOp<CUDAContext>::DoRunWithType() {
const int numBlobs = InputSize();
ReinitializeTensor(&hostBlobSizes_, {numBlobs}, at::dtype<int>().device(CPU));
int* hostBlobSizesData = hostBlobSizes_.mutable_data<int>();
ReinitializeTensor(&hostInputs_, {numBlobs}, at::dtype<T*>().device(CPU));
T** hostInputsData = hostInputs_.mutable_data<T*>();
ReinitializeTensor(&hostOutputs_, {numBlobs}, at::dtype<T*>().device(CPU));
T** hostOutputsData = hostOutputs_.mutable_data<T*>();
int totalSize = 0;
int maxSize = 0;
for (int i = 0; i < numBlobs; ++i) {
hostBlobSizesData[i] = Input(i).numel();
totalSize += hostBlobSizesData[i];
maxSize = std::max(maxSize, hostBlobSizesData[i]);
hostInputsData[i] = Input(i).template data<T>();
hostOutputsData[i] = Output(i)->template mutable_data<T>();
}
ReinitializeTensor(&inputs_, {numBlobs}, at::dtype<T*>().device(CUDA));
ReinitializeTensor(&outputs_, {numBlobs}, at::dtype<T*>().device(CUDA));
ReinitializeTensor(&blobSizes_, {numBlobs}, at::dtype<T*>().device(CUDA));
blobSizes_.CopyFrom(hostBlobSizes_);
inputs_.CopyFrom(hostInputs_);
outputs_.CopyFrom(hostOutputs_);
// Select which kernel to launch based on the length of the tensors
// The first one performs better when there are many tensors of short length
// The second one is better when there are small number of long tensors
if (numBlobs > CAFFE_GET_BLOCKS(maxSize)) {
// Note: number of blocks has to be equal to the numBlobs
ScaleBlobsCUDAKernelManyTensors<T>
<<<numBlobs, CAFFE_CUDA_NUM_THREADS, 0, context_.cuda_stream()>>>(
scale_,
blobSizes_.data<int>(),
inputs_.mutable_data<T*>(),
outputs_.mutable_data<T*>());
C10_CUDA_KERNEL_LAUNCH_CHECK();
} else {
ScaleBlobsCUDAKernel<T>
<<<CAFFE_GET_BLOCKS(maxSize),
CAFFE_CUDA_NUM_THREADS,
0,
context_.cuda_stream()>>>(
scale_,
numBlobs,
blobSizes_.data<int>(),
inputs_.mutable_data<T*>(),
outputs_.mutable_data<T*>());
C10_CUDA_KERNEL_LAUNCH_CHECK();
}
return true;
}
template <>
bool ScaleBlobsOp<CUDAContext>::RunOnDevice() {
for (int i = 0; i < InputSize(); ++i) {
auto& input = this->template Input<Tensor>(i, CUDA);
auto* output = this->template Output<Tensor>(i, CUDA);
output->ResizeLike(input);
}
return DispatchHelper<TensorTypes<at::Half, float>>::call(this, Input(0));
}
REGISTER_CUDA_OPERATOR(ScaleBlobs, ScaleBlobsOp<CUDAContext>);
/*
* Implementation of a different version of the kernel
* This balances the work per thread and could be useful
* when there is a high imbalance between tensors
* However the memory requirement is very high so it does
* not perform well for common scenarios
*
*
* Additional storage for the start pointers is required
* for ScaleBlobsCUDAKernelBalanced setup
*
int threadsPerBlock = CAFFE_CUDA_NUM_THREADS;
int coorArrSize = 2 * ((totalSize - 1) / threadsPerBlock + 1);
int startCoorArr[coorArrSize];
int* dStartCoorArr;
int j = 0, cur = 0, elemsLeftInRow = 0;
for (int i = 0; i < numBlobs; ++i) {
if (i == 0) {
startCoorArr[cur++] = i;
startCoorArr[cur++] = j;
elemsLeftInRow = 0;
}
while (j < sizeArr[i]) {
j += threadsPerBlock - elemsLeftInRow;
if (j < sizeArr[i]) {
startCoorArr[cur++] = i;
startCoorArr[cur++] = j;
elemsLeftInRow = 0;
} else {
elemsLeftInRow = sizeArr[i] - j + threadsPerBlock;
j = 0;
break;
}
}
}
cudaMalloc(&dStartCoorArr, sizeof(int) * coorArrSize);
cudaMemcpy(dStartCoorArr, startCoorArr, sizeof(int) * coorArrSize,
cudaMemcpyHostToDevice);
// ScaleBlobsCUDAKernelBalanced kernel launch
ScaleBlobsCUDAKernelBalanced<T>
<<<(totalSize-1)/CAFFE_CUDA_NUM_THREADS+1, CAFFE_CUDA_NUM_THREADS, 0,
context_.cuda_stream()>>>(
scale_, numBlobs, coorArrSize, dStartCoorArr, dSizeArr, dInputArr,
dOutputArr);
C10_CUDA_KERNEL_LAUNCH_CHECK();
cudaFree(dStartCoorArr);
*/
template <typename T>
__global__ void ScaleBlobsCUDAKernelBalanced(
const float scale,
const int numBlobs,
const int coorArrSize,
const int* coorArr,
const int* sizeArr,
T** X,
T** Y) {
int i = coorArr[2 * blockIdx.x + 1] + threadIdx.x;
int curTen = coorArr[2 * blockIdx.x];
while (curTen < numBlobs && i >= sizeArr[curTen]) {
i -= sizeArr[curTen++];
}
if (curTen < numBlobs) {
Y[curTen][i] = X[curTen][i] * scale;
}
}
} // namespace caffe2
|