1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182
|
#pragma once
#include "caffe2/core/operator.h"
#include "c10/util/irange.h"
#include <algorithm>
#include <cmath>
#include <limits>
namespace caffe2 {
template <class Context>
class SelfBinningHistogramOp final : public Operator<Context> {
public:
USE_OPERATOR_CONTEXT_FUNCTIONS;
template <class... Args>
explicit SelfBinningHistogramOp(Args&&... args)
: Operator<Context>(std::forward<Args>(args)...),
num_bins_(this->template GetSingleArgument<int>("num_bins", 0)),
num_edges_(num_bins_ + 1),
bin_spacing_(this->template GetSingleArgument<std::string>(
"bin_spacing",
"linear")),
logspace_start_(this->template GetSingleArgument<float>("logspace_start", 1e-24)),
abs_(this->template GetSingleArgument<bool>("abs", false))
{
CAFFE_ENFORCE_GE(
num_bins_, 1, "Number of bins must be greater than or equal to 1.");
CAFFE_ENFORCE(
bin_spacing_ == "linear" || bin_spacing_ == "logarithmic",
"Bin spacing can be one of 'linear' or 'logarithmic'."
);
CAFFE_ENFORCE_GT(
logspace_start_, 0,
"Logarithmic spacing base is a multiplier and is expected to be >1.");
}
bool RunOnDevice() override {
return DispatchHelper<TensorTypes<float, double>>::call(this, Input(0));
}
template <typename T>
bool DoRunWithType() {
CheckInputs();
// Scale the range so that the last count is always 0.
const T RANGE_SCALING = 1.0001;
const auto* histogram_values = Output(HISTOGRAM_VALUES);
histogram_values->Resize(num_edges_);
auto* histogram_values_data = histogram_values->template mutable_data<T>();
const auto* histogram_counts = Output(HISTOGRAM_COUNTS);
histogram_counts->Resize(num_edges_);
auto* histogram_counts_data =
histogram_counts->template mutable_data<int64_t>();
// Calculate the max and min.
bool first_seen = false;
// 0 initialization is arbitrary here to suppress linter warnings.
// The actual initialization check happens through the first_seen variable.
T max = 0;
T min = 0;
int64_t total_count = 0;
for (const auto input_idx : c10::irange(InputSize())) {
const auto& x = Input(input_idx);
const int64_t N = x.numel();
total_count += N;
const auto* x_data = x.template data<T>();
for (const auto data_idx : c10::irange(N)) {
const T val = this->abs_ ? std::abs(x_data[data_idx]) : x_data[data_idx];
if (!first_seen) {
max = val;
min = val;
first_seen = true;
} else {
max = std::max(val, max);
min = std::min(val, min);
}
}
}
if (!first_seen) {
math::Set<T, Context>(num_edges_, 0, histogram_values_data, &context_);
math::Set<int64_t, Context>(
num_edges_, 0, histogram_counts_data, &context_);
return true;
}
CAFFE_ENFORCE(min <= max, "Incorrect min-max computation min=", min, " max=", max);
T scaled_max = 0; // this is set in both branches
if (bin_spacing_ == "linear") {
// Let's scale the range so that the last count is 0.
scaled_max = min + (max - min) * RANGE_SCALING;
T scaled_range = (scaled_max - min);
// Avoid underflow by calculating advancement through multiplication.
for (const auto i : c10::irange(num_edges_)) {
T advancement_ratio = T(i) / num_bins_;
histogram_values_data[i] = min + advancement_ratio * scaled_range;
}
} else if (bin_spacing_ == "logarithmic") {
// First, we need to sanitize the range.
if (min < logspace_start_) {
min = logspace_start_;
}
if (max < logspace_start_) {
max = logspace_start_;
}
T linear_range = max - min;
linear_range = linear_range * RANGE_SCALING;
scaled_max = min + linear_range;
// Calculate base interval using geometric sum.
// Simply: multiplier = exp((log(max) - log(min))/N)
// Avoid underflow by delaying division and exp.
T log_multiplier_numerator =log(scaled_max) - log(min);
// Avoid underflow by:
// - Calculating each advancement separately for each i.
for (const auto i : c10::irange(num_edges_)) {
T advancement_ratio = T(i)/num_bins_;
histogram_values_data[i] = min * exp(log_multiplier_numerator * advancement_ratio);
}
}
math::Set<int64_t, Context>(
num_edges_, 0, histogram_counts_data, &context_);
if (histogram_values_data[num_edges_-1] <= max) {
// In cases of min&max being equal (or any unexpected numerical underflow) we
// may not have a final edge larger than the max.
histogram_values_data[num_edges_-1] = scaled_max;
histogram_counts_data[0] = total_count;
}
else {
for (const auto input_idx : c10::irange(InputSize())) {
const auto& x = Input(input_idx);
const int64_t N = x.numel();
const auto* x_data = x.template data<T>();
for (const auto data_idx : c10::irange(N)) {
const T val = this->abs_ ? std::abs(x_data[data_idx]) : x_data[data_idx];
const auto bisection_it = std::upper_bound(
histogram_values_data,
histogram_values_data + num_edges_,
val);
const int bisection_idx = bisection_it - histogram_values_data;
if (bisection_idx > 0 && bisection_idx < num_edges_) {
histogram_counts_data[bisection_idx - 1]++;
}
if (bisection_idx == 0) {
histogram_counts_data[0]++;
}
}
}
}
return true;
}
protected:
OUTPUT_TAGS(HISTOGRAM_VALUES, HISTOGRAM_COUNTS);
private:
int num_bins_;
int num_edges_;
std::string bin_spacing_;
float logspace_start_;
bool abs_; // automatically apply abs() on the input values
void CheckInputs() {
const auto& input_zero = Input(0);
for (const auto i : c10::irange(1, InputSize())) {
CAFFE_ENFORCE_EQ(
Input(i).dtype(),
input_zero.dtype(),
"All inputs must have the same type; expected ",
input_zero.dtype().name(),
" but got ",
Input(i).dtype().name(),
" for input ",
i);
}
}
};
} // namespace caffe2
|