1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357
|
#include "caffe2/core/context_gpu.h"
#include "caffe2/operators/slice_op.h"
#include "caffe2/utils/math.h"
namespace caffe2 {
namespace {
__global__ void SliceCopyKernel(
const char *const src_offset_bytes,
const int src_block_size_bytes,
char *const dst_offset_bytes,
const int dst_block_size_bytes,
const int copy_size,
const int num_blocks) {
if ((copy_size % sizeof(int) == 0) &&
(src_block_size_bytes % sizeof(int) == 0) &&
(dst_block_size_bytes % sizeof(int) == 0)) {
const int* src = (int*)src_offset_bytes;
int *const dst = (int*)dst_offset_bytes;
const int src_block_size = src_block_size_bytes / sizeof(int);
const int dst_block_size = dst_block_size_bytes / sizeof(int);
const int copyChunks = copy_size / sizeof(int);
CUDA_1D_KERNEL_LOOP(index, num_blocks * copyChunks) {
const int chunk = index % copyChunks;
const int block = index / copyChunks;
dst[block * dst_block_size + chunk] = src[block * src_block_size + chunk];
}
} else {
const char *const src = (char*)src_offset_bytes;
char *const dst = (char*)dst_offset_bytes;
const int src_block_size = src_block_size_bytes / sizeof(char);
const int dst_block_size = dst_block_size_bytes / sizeof(char);
const int copyChunks = copy_size / sizeof(char);
CUDA_1D_KERNEL_LOOP(index, num_blocks * copyChunks) {
const int chunk = index % copyChunks;
const int block = index / copyChunks;
dst[block * dst_block_size + chunk] = src[block * src_block_size + chunk];
}
}
}
template <class SIndex, class Context>
bool SliceImplGpu(
Tensor* output,
const Tensor& data,
const TensorCPU& starts,
const TensorCPU& ends,
Context* context,
Tensor* gdata = nullptr,
const Tensor* go = nullptr) {
bool backward = output == nullptr;
auto* starts_data = starts.template data<SIndex>();
auto* ends_data = ends.template data<SIndex>();
CAFFE_ENFORCE_EQ(starts.dim(), 1);
CAFFE_ENFORCE_EQ(ends.dim(), 1);
CAFFE_ENFORCE_GE(data.dim(), starts.size());
CAFFE_ENFORCE_EQ(starts.numel(), ends.numel());
std::vector<int> starts_idx(data.dim());
std::vector<int> ends_idx(data.dim());
std::vector<int> dst_sizes(data.dim());
for (int i = 0; i < data.dim(); ++i) {
if (i >= starts.numel()) {
starts_idx[i] = 0;
ends_idx[i] = data.size(i);
dst_sizes[i] = data.size(i);
continue;
}
if (data.size(i) > 0) {
auto start = starts_data[i];
auto end = ends_data[i];
if (start < 0) {
start = data.size(i) + 1 + start;
}
if (end < 0) {
end = data.size(i) + 1 + end;
}
if (start > data.size(i)) {
start = data.size(i);
}
if (end > data.size(i)) {
end = data.size(i);
}
CAFFE_ENFORCE_GE(start, 0);
CAFFE_ENFORCE_GE(end, 0);
CAFFE_ENFORCE_GE(end, start);
starts_idx[i] = start;
ends_idx[i] = end;
dst_sizes[i] = end - start;
} else {
starts_idx[i] = 0;
ends_idx[i] = 0;
dst_sizes[i] = 0;
}
}
if (data.numel() <= 0) {
// When the input is empty, we do not need to do copy.
if (!backward) {
output->Resize(dst_sizes);
output->raw_mutable_data(data.meta());
}
return true;
}
// for now only supports slicing in 1 dimension
int dim = -1;
for (int i = 0; i < data.dim(); ++i) {
if (starts_idx[i] > 0 || ends_idx[i] < data.size(i)) {
CAFFE_ENFORCE_EQ(
dim, -1, "Currently only possible to slice in 1 dimension.");
dim = i;
}
}
if (dim == -1) {
if (!backward) {
output->CopyFrom(data, true /*async*/);
} else {
gdata->CopyFrom(*go, true /*async*/);
}
return true;
}
int unit = std::accumulate(
data.sizes().begin() + dim + 1,
data.sizes().end(),
1,
std::multiplies<int>());
int num_blocks = std::accumulate(
data.sizes().begin(),
data.sizes().begin() + dim,
1,
std::multiplies<int>());
if (!backward) {
output->Resize(dst_sizes);
} else {
gdata->ResizeLike(data);
}
auto itemsize = data.meta().itemsize();
if (!backward) {
const char *const src_bytes = (char*)data.raw_data();
char *const dst_bytes = (char*)output->raw_mutable_data(data.meta());
const size_t src_block_size = unit * data.size(dim);
const size_t dst_block_size = unit * (ends_idx[dim] - starts_idx[dim]);
const size_t src_offset = unit * starts_idx[dim];
if (num_blocks == 0 || dst_block_size == 0) {
return true;
}
const size_t src_block_size_bytes = itemsize * src_block_size;
const size_t dst_block_size_bytes = itemsize * dst_block_size;
const char *const src_offset_bytes = src_bytes + itemsize * src_offset;
char *const dst_offset_bytes = dst_bytes;
SliceCopyKernel<<<
std::min(num_blocks, CAFFE_MAXIMUM_NUM_BLOCKS),
CAFFE_CUDA_NUM_THREADS,
0,
context->cuda_stream()>>>(
src_offset_bytes,
src_block_size_bytes,
dst_offset_bytes,
dst_block_size_bytes,
dst_block_size_bytes,
num_blocks);
C10_CUDA_KERNEL_LAUNCH_CHECK();
} else {
const char *const src_bytes = (char*)go->raw_data();
char *const dst_bytes = (char*)gdata->raw_mutable_data(go->meta());
const size_t src_block_size = unit * (ends_idx[dim] - starts_idx[dim]);
const size_t dst_block_size = unit * data.size(dim);
const size_t dst_offset = unit * starts_idx[dim];
if (num_blocks == 0 || dst_block_size == 0) {
return true;
}
const size_t src_block_size_bytes = itemsize * src_block_size;
const size_t dst_block_size_bytes = itemsize * dst_block_size;
const char *const src_offset_bytes = src_bytes;
char *const dst_offset_bytes = dst_bytes + itemsize * dst_offset;
// Zero out gradient blob before copy since we copy in fewer items than
// there is space for
math::Set<float, CUDAContext>(
gdata->numel(),
0.0f,
(float*)gdata->raw_mutable_data(go->meta()),
context);
// If output tensor is empty, just return zeroed gradient tensor
if (!src_bytes) {
return true;
}
SliceCopyKernel<<<
std::min(num_blocks, CAFFE_MAXIMUM_NUM_BLOCKS),
CAFFE_CUDA_NUM_THREADS,
0,
context->cuda_stream()>>>(
src_offset_bytes,
src_block_size_bytes,
dst_offset_bytes,
dst_block_size_bytes,
src_block_size_bytes,
num_blocks);
C10_CUDA_KERNEL_LAUNCH_CHECK();
}
return true;
}
} // namespace
template<>
class SliceOp<CUDAContext> : public Operator<CUDAContext> {
public:
USE_OPERATOR_FUNCTIONS(CUDAContext);
template<class... Args> explicit SliceOp(Args&&... args)
: Operator<CUDAContext>(std::forward<Args>(args)...),
starts_(this->template GetRepeatedArgument<int64_t>("starts")),
ends_(this->template GetRepeatedArgument<int64_t>("ends")),
statically_inited_(false) {}
bool RunOnDevice() override {
if (InputSize() > 1) {
return DispatchHelper<TensorTypes<int, int64_t>>::call(this, Input(1));
} else {
return DoRunWithType<int64_t>();
}
}
template <typename SIndex>
bool DoRunWithType() {
auto* output = Output(0);
auto& data = Input(0);
if (InputSize() > 1) {
ReinitializeAndCopyFrom(&starts_host_, at::dtype<SIndex>().device(CPU), Input(1));
ReinitializeAndCopyFrom(&ends_host_, at::dtype<SIndex>().device(CPU), Input(2));
} else {
if (!statically_inited_) {
CAFFE_ENFORCE(HasArgument("starts"));
CAFFE_ENFORCE(HasArgument("ends"));
CAFFE_ENFORCE_EQ(starts_.size(), ends_.size());
ReinitializeTensor(&starts_host_, {static_cast<int64_t>(starts_.size())}, at::dtype<SIndex>().device(CPU));
ReinitializeTensor(&ends_host_, {static_cast<int64_t>(ends_.size())}, at::dtype<SIndex>().device(CPU));
memcpy(
starts_host_.mutable_data<SIndex>(),
starts_.data(),
sizeof(SIndex) * starts_.size());
memcpy(
ends_host_.mutable_data<SIndex>(),
ends_.data(),
sizeof(SIndex) * ends_.size());
statically_inited_ = true;
}
}
return SliceImplGpu<SIndex, CUDAContext>(
output, data, starts_host_, ends_host_, &context_);
}
private:
std::vector<int64_t> starts_;
std::vector<int64_t> ends_;
bool statically_inited_;
Tensor starts_host_;
Tensor ends_host_;
}; // class SliceOp<CUDAContext>
REGISTER_CUDA_OPERATOR(Slice, SliceOp<CUDAContext>);
template <>
class SliceGradientOp<CUDAContext> : public Operator<CUDAContext> {
public:
USE_OPERATOR_FUNCTIONS(CUDAContext);
template<class... Args> explicit SliceGradientOp(Args&&... args)
: Operator<CUDAContext>(std::forward<Args>(args)...),
starts_(this->template GetRepeatedArgument<int64_t>("starts")),
ends_(this->template GetRepeatedArgument<int64_t>("ends")),
statically_inited_(false) {}
C10_DISABLE_COPY_AND_ASSIGN(SliceGradientOp);
bool RunOnDevice() override {
if (InputSize() == 4) {
return DispatchHelper<TensorTypes<int, int64_t>>::call(this, Input(1));
} else {
return DoRunWithType<int64_t>();
}
}
template <typename SIndex>
bool DoRunWithType() {
auto* gdata = Output(0);
auto& data = Input(0);
if (InputSize() == 4) {
ReinitializeAndCopyFrom(&starts_host_, at::dtype<SIndex>().device(CPU), Input(1));
ReinitializeAndCopyFrom(&ends_host_, at::dtype<SIndex>().device(CPU), Input(2));
auto& go = Input(3);
return SliceImplGpu<SIndex, CUDAContext>(
nullptr, data, starts_host_, ends_host_, &context_, gdata, &go);
} else {
if (!statically_inited_) {
CAFFE_ENFORCE(HasArgument("starts"));
CAFFE_ENFORCE(HasArgument("ends"));
CAFFE_ENFORCE_EQ(starts_.size(), ends_.size());
ReinitializeTensor(&starts_host_, {static_cast<int64_t>(starts_.size())}, at::dtype<SIndex>().device(CPU));
ReinitializeTensor(&ends_host_, {static_cast<int64_t>(ends_.size())}, at::dtype<SIndex>().device(CPU));
memcpy(
starts_host_.mutable_data<SIndex>(),
starts_.data(),
sizeof(SIndex) * starts_.size());
memcpy(
ends_host_.mutable_data<SIndex>(),
ends_.data(),
sizeof(SIndex) * ends_.size());
statically_inited_ = true;
}
auto& go = Input(1);
return SliceImplGpu<SIndex, CUDAContext>(
nullptr, data, starts_host_, ends_host_, &context_, gdata, &go);
}
}
private:
std::vector<int64_t> starts_;
std::vector<int64_t> ends_;
bool statically_inited_;
Tensor starts_host_;
Tensor ends_host_;
}; // class SliceGradientOp<CUDAContext>
REGISTER_CUDA_OPERATOR(SliceGradient, SliceGradientOp<CUDAContext>);
} // namespace caffe2
|