1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148
|
#include "caffe2/core/context_gpu.h"
#include "caffe2/core/cudnn_wrappers.h"
#include "caffe2/core/types.h"
#include "caffe2/operators/softmax_op.h"
namespace caffe2 {
namespace {
constexpr int NUM_DESCRIPTORS = 2;
constexpr int GRADIENT_NUM_DESCRIPTORS = 3;
constexpr int BOTTOM_DESC_ID = 0;
constexpr int TOP_DESC_ID = 1;
constexpr int TOP_GRADIENT_DESC_ID = 2;
} // namespace
class CuDNNSoftmaxOp final : public Operator<CUDAContext> {
public:
template <class... Args>
explicit CuDNNSoftmaxOp(Args&&... args)
: Operator<CUDAContext>(std::forward<Args>(args)...),
cudnn_wrapper_(&context_),
axis_(OperatorBase::GetSingleArgument<int>("axis", 1)) {
CUDNN_ENFORCE(cudnnCreateTensorDescriptor(&desc_));
}
~CuDNNSoftmaxOp() override {
CUDNN_ENFORCE(cudnnDestroyTensorDescriptor(desc_));
}
template <typename T>
bool DoRunWithType() {
auto& X = Input(0);
const auto canonical_axis = X.canonical_axis_index(axis_);
const int N = X.size_to_dim(canonical_axis);
const int D = X.size_from_dim(canonical_axis);
auto* Y = Output(0, X.sizes(), at::dtype<T>());
auto* Y_data = Y->template mutable_data<T>();
if (N == 0 || D == 0) {
return true;
}
if (dims_ != X.sizes()) {
CUDNN_ENFORCE(cudnnSetTensor4dDescriptor(
desc_,
GetCudnnTensorFormat(StorageOrder::NCHW),
cudnnTypeWrapper<T>::type,
N,
D,
1,
1));
dims_ = X.sizes().vec();
}
CUDNN_ENFORCE(cudnnSoftmaxForward(
cudnn_wrapper_.inline_cudnn_handle(),
CUDNN_SOFTMAX_ACCURATE,
CUDNN_SOFTMAX_MODE_INSTANCE,
cudnnTypeWrapper<T>::kOne(),
desc_,
X.template data<T>(),
cudnnTypeWrapper<T>::kZero(),
desc_,
Y_data));
return true;
}
bool RunOnDevice() override {
return DispatchHelper<TensorTypes<float, at::Half>>::call(this, Input(0));
}
protected:
CuDNNWrapper cudnn_wrapper_;
int axis_;
cudnnTensorDescriptor_t desc_;
vector<int64_t> dims_;
};
class CuDNNSoftmaxGradientOp final : public Operator<CUDAContext> {
public:
template <class... Args>
explicit CuDNNSoftmaxGradientOp(Args&&... args)
: Operator<CUDAContext>(std::forward<Args>(args)...),
cudnn_wrapper_(&context_),
axis_(OperatorBase::GetSingleArgument<int>("axis", 1)) {
CUDNN_ENFORCE(cudnnCreateTensorDescriptor(&desc_));
}
~CuDNNSoftmaxGradientOp() override {
CUDNN_ENFORCE(cudnnDestroyTensorDescriptor(desc_));
}
template <typename T>
bool DoRunWithType() {
auto& Y = Input(0);
auto& dY = Input(1);
const auto canonical_axis = Y.canonical_axis_index(axis_);
const int N = Y.size_to_dim(canonical_axis);
const int D = Y.size_from_dim(canonical_axis);
TORCH_CHECK_EQ(Y.sizes(), dY.sizes());
auto* dX = Output(0, Y.sizes(), at::dtype<T>());
auto* dX_data = dX->template mutable_data<T>();
if (N == 0 || D == 0) {
return true;
}
if (dims_ != Y.sizes()) {
CUDNN_ENFORCE(cudnnSetTensor4dDescriptor(
desc_,
GetCudnnTensorFormat(StorageOrder::NCHW),
cudnnTypeWrapper<T>::type,
N,
D,
1,
1));
dims_ = Y.sizes().vec();
}
CUDNN_ENFORCE(cudnnSoftmaxBackward(
cudnn_wrapper_.inline_cudnn_handle(),
CUDNN_SOFTMAX_ACCURATE,
CUDNN_SOFTMAX_MODE_INSTANCE,
cudnnTypeWrapper<T>::kOne(),
desc_,
Y.template data<T>(),
desc_,
dY.template data<T>(),
cudnnTypeWrapper<T>::kZero(),
desc_,
dX_data));
return true;
}
bool RunOnDevice() override {
return DispatchHelper<TensorTypes<float, at::Half>>::call(this, Input(0));
}
protected:
CuDNNWrapper cudnn_wrapper_;
int axis_;
cudnnTensorDescriptor_t desc_;
vector<int64_t> dims_;
};
namespace {
REGISTER_CUDNN_OPERATOR(Softmax, CuDNNSoftmaxOp);
REGISTER_CUDNN_OPERATOR(SoftmaxGradient, CuDNNSoftmaxGradientOp);
} // namespace
} // namespace caffe2
|