File: sparse_lp_regularizer_op.h

package info (click to toggle)
pytorch 1.13.1%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 139,252 kB
  • sloc: cpp: 1,100,274; python: 706,454; ansic: 83,052; asm: 7,618; java: 3,273; sh: 2,841; javascript: 612; makefile: 323; xml: 269; ruby: 185; yacc: 144; objc: 68; lex: 44
file content (43 lines) | stat: -rw-r--r-- 1,130 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
#pragma once

#include "caffe2/core/operator.h"
#include "caffe2/utils/math.h"

namespace caffe2 {

template <typename T, class Context>
class TORCH_API SparseLpRegularizerOp final : public Operator<Context> {
 public:
  USE_OPERATOR_CONTEXT_FUNCTIONS;
  template <class... Args>
  explicit SparseLpRegularizerOp(Args&&... args)
      : Operator<Context>(std::forward<Args>(args)...),
        p_(this->template GetSingleArgument<float>("p", 2.0)),
        reg_lambda_(
            this->template GetSingleArgument<float>("reg_lambda", 1e-5)) {
    CAFFE_ENFORCE(
        p_ == 1.0 || p_ == 2.0,
        "Sparse Lp regularizer only implemented for p=1 or p=2.");
    CAFFE_ENFORCE_GT(
        reg_lambda_,
        0.0,
        "Lambda for sparse Lp regularizer must be greater than 0.");
    CAFFE_ENFORCE_LT(
        reg_lambda_,
        1.0,
        "Lambda for sparse Lp regularizer must be less than 1.");
  }

  bool RunOnDevice() override;

  template <typename SIndex>
  bool DoRunWithType();

 protected:
  float p_;
  float reg_lambda_;
  INPUT_TAGS(PARAM, INDICES);
  OUTPUT_TAGS(OUTPUT_PARAM);
};

} // namespace caffe2