1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168
|
#include "caffe2/operators/sparse_normalize_op.h"
#include "caffe2/core/tensor.h"
#include "caffe2/utils/eigen_utils.h"
#include "caffe2/utils/cpuid.h"
#ifdef USE_FBGEMM
#include "fbgemm/FbgemmConvert.h"
#endif
namespace caffe2 {
template <>
bool SparseNormalizeOp<float, CPUContext>::RunOnDevice() {
return DispatchHelper<TensorTypes<int32_t, int64_t>>::call(
this, Input(INDICES));
}
template <>
template <typename SIndex>
bool SparseNormalizeOp<float, CPUContext>::DoRunWithType() {
const auto* indices = Input(INDICES).template data<SIndex>();
const auto* paramIn = Input(PARAM).template data<float>();
auto* paramOut = Output(OUTPUT_PARAM)->template mutable_data<float>();
const float kEps = 1e-12f;
// n: number of sparse embeddings to be normalized
auto n = Input(INDICES).numel();
if (n == 0) {
return true;
}
// embedding length, e.g. 32, 64, 128
auto block_size = Input(PARAM).size_from_dim(1);
for (int i = 0; i < n; ++i) {
auto idx = indices[i];
auto offsetIdx = idx * block_size;
ConstEigenVectorMap<float> xVec(paramIn + offsetIdx, block_size);
auto norm = xVec.template lpNorm<2>();
if (use_max_norm_ && norm <= norm_) {
continue;
}
math::Scale(
block_size,
norm_ / (norm + kEps),
paramOut + offsetIdx,
paramOut + offsetIdx,
&context_);
}
return true;
}
template <>
bool SparseNormalizeOp<c10::Half, CPUContext>::RunOnDevice() {
return DispatchHelper<TensorTypes<int32_t, int64_t>>::call(
this, Input(INDICES));
}
inline void Float16ToFloat_ref(const at::Half* in, float* out, size_t N) {
for (size_t i = 0; i < N; ++i) {
out[i] = in[i];
}
}
template <>
template <typename SIndex>
bool SparseNormalizeOp<c10::Half, CPUContext>::DoRunWithType() {
const auto* indices = Input(INDICES).template data<SIndex>();
const auto* paramIn = Input(PARAM).template data<c10::Half>();
auto* paramOut = Output(OUTPUT_PARAM)->template mutable_data<c10::Half>();
const float kEps = 1e-12f;
// n: number of sparse embeddings to be normalized
auto n = Input(INDICES).numel();
if (n == 0) {
return true;
}
// embedding length, e.g. 32, 64, 128
auto block_size = Input(PARAM).size_from_dim(1);
vector<float> row_vec_fp32(block_size);
auto out_data = row_vec_fp32.data();
for (int i = 0; i < n; ++i) {
auto idx = indices[i];
auto offsetIdx = idx * block_size;
#ifdef USE_FBGEMM
if (GetCpuId().avx2()) {
fbgemm::Float16ToFloat_avx2(
reinterpret_cast<const fbgemm::float16*>(paramIn + offsetIdx),
out_data,
block_size);
} else {
Float16ToFloat_ref(paramIn + offsetIdx, out_data, block_size);
}
#else
Float16ToFloat_ref(paramIn + offsetIdx, out_data, block_size);
#endif
ConstEigenVectorMap<float> xVec_fp32(row_vec_fp32.data(), block_size);
float norm = xVec_fp32.template lpNorm<2>();
if (use_max_norm_ && norm <= norm_) {
continue;
}
auto Y = paramOut + offsetIdx;
EigenVectorArrayMap<c10::Half>(Y, block_size) *=
static_cast<float>(norm_ / (norm + kEps));
}
return true;
}
REGISTER_CPU_OPERATOR(SparseNormalize, SparseNormalizeOp<float, CPUContext>);
OPERATOR_SCHEMA(SparseNormalize)
.NumInputs(2, 3)
.NumOutputs(1)
.Input(0, "param", "Parameters to be normalized")
.Input(1, "indices", "Sparse indices")
.Input(
2,
"grad",
"Gradient computed (optional - not used, this argument is for backwards compatibility)")
.Output(0, "output_param", "Normalized parameters")
.EnforceOneToOneInplace()
.Arg(
"use_max_norm",
"A bool variable to control whether to use max norm \
or constant norm. When use_max_norm = false, constant norm is used so that \
all the embedding vectors are scaled to have a L2 norm equals to A \
(see blow argument norm=A). If use_max_norm = true, \
max norm is used so that embedding is scaled so that its l2 norm is no larger \
than A. If an embedding's norm is less than A originally, \
the embedding is left unchanged.\
The default is True.")
.Arg("norm", "L2 norm of the embedding. The default is 1.0.")
.SetDoc(R"DOC(
Given a sparse matrix, apply max_norm or constant_norm sparse regularization.
)DOC");
SHOULD_NOT_DO_GRADIENT(SparseNormalize);
REGISTER_CPU_OPERATOR(Float16SparseNormalize, SparseNormalizeOp<c10::Half, CPUContext>);
OPERATOR_SCHEMA(Float16SparseNormalize)
.NumInputs(2, 3)
.NumOutputs(1)
.Input(0, "param", "Parameters to be normalized")
.Input(1, "indices", "Sparse indices")
.Input(
2,
"grad",
"Gradient computed (optional - not used, this argument is for backwards compatibility)")
.Output(0, "output_param", "Normalized parameters")
.EnforceOneToOneInplace()
.Arg(
"use_max_norm",
"A bool variable to control whether to use max norm \
or constant norm. When use_max_norm = false, constant norm is used so that \
all the embedding vectors are scaled to have a L2 norm equals to A \
(see blow argument norm=A). If use_max_norm = true, \
max norm is used so that embedding is scaled so that its l2 norm is no larger \
than A. If an embedding's norm is less than A originally, \
the embedding is left unchanged.\
The default is True.")
.Arg("norm", "L2 norm of the embedding. The default is 1.0.")
.SetDoc(R"DOC(
Given a sparse matrix, apply max_norm or constant_norm sparse regularization.
)DOC");
SHOULD_NOT_DO_GRADIENT(Float16SparseNormalize);
} // namespace caffe2
|