File: spatial_batch_norm_op_cudnn.cu

package info (click to toggle)
pytorch 1.13.1%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 139,252 kB
  • sloc: cpp: 1,100,274; python: 706,454; ansic: 83,052; asm: 7,618; java: 3,273; sh: 2,841; javascript: 612; makefile: 323; xml: 269; ruby: 185; yacc: 144; objc: 68; lex: 44
file content (482 lines) | stat: -rw-r--r-- 16,327 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
#include "caffe2/operators/spatial_batch_norm_op.h"

#include <array>
#include <functional>
#include <numeric>
#include <vector>

#include "caffe2/core/context_gpu.h"
#include "caffe2/core/cudnn_wrappers.h"
#include "caffe2/operators/spatial_batch_norm_op_impl.cuh"
#include "caffe2/utils/math.h"

#if CUDNN_VERSION_MIN(5, 0, 0)

namespace caffe2 {

namespace {

void SetTensorDescriptor(
    const cudnnDataType_t data_type,
    const cudnnBatchNormMode_t mode,
    const StorageOrder order,
    const std::vector<int>& input_dims,
    cudnnTensorDescriptor_t data_desc,
    cudnnTensorDescriptor_t param_desc) {
  const int ndim = input_dims.size();
  const int N = input_dims[0];
  const int C = order == StorageOrder::NCHW ? input_dims[1] : input_dims.back();
  if (ndim == 3) {
    const int H = 1;
    const int W = order == StorageOrder::NCHW ? input_dims[2] : input_dims[1];
    CUDNN_ENFORCE(cudnnSetTensor4dDescriptor(
        data_desc, GetCudnnTensorFormat(order), data_type, N, C, H, W));
  } else if (ndim == 4) {
    const int H = order == StorageOrder::NCHW ? input_dims[2] : input_dims[1];
    const int W = order == StorageOrder::NCHW ? input_dims[3] : input_dims[2];
    CUDNN_ENFORCE(cudnnSetTensor4dDescriptor(
        data_desc, GetCudnnTensorFormat(order), data_type, N, C, H, W));
  } else {
    const int H = order == StorageOrder::NCHW ? input_dims[2] : input_dims[1];
    const int W = order == StorageOrder::NCHW ? input_dims[3] : input_dims[2];
    const auto l_iter = order == StorageOrder::NCHW ? input_dims.cbegin() + 4
                                                    : input_dims.cbegin() + 3;
    const auto r_iter =
        order == StorageOrder::NCHW ? input_dims.cend() : input_dims.cend() - 1;
    const int D = std::accumulate(l_iter, r_iter, 1, std::multiplies<int>());
    const std::array<int, 5> dims = {N, C, H, W, D};
    const std::array<int, 5> strides = order == StorageOrder::NCHW
        ? std::array<int, 5>{C * H * W * D, H * W * D, W * D, D, 1}
        : std::array<int, 5>{C * H * W * D, 1, W * D * C, D * C, C};
    CUDNN_ENFORCE(cudnnSetTensorNdDescriptor(
        data_desc, data_type, 5, dims.data(), strides.data()));
  }
  CUDNN_ENFORCE(cudnnDeriveBNTensorDescriptor(param_desc, data_desc, mode));
}

} // namespace

class CuDNNSpatialBNOp final : public SpatialBNOp<CUDAContext> {
 public:
  USE_OPERATOR_FUNCTIONS(CUDAContext);

  CuDNNSpatialBNOp(const OperatorDef& operator_def, Workspace* ws)
      : SpatialBNOp<CUDAContext>(operator_def, ws),
        cudnn_wrapper_(&context_),
#if CUDNN_VERSION_MIN(7, 0, 0)
        // TODO(T31829456): The new CUDNN_BATCHNORM_SPATIAL_PERSISTENT mode was
        // introduced in CuDNN 7 for performance optimization, but it results in
        // accuracy losses in convolution models such as ResNeXt-101 and
        // video R(2+1)D. We will fall back to the normal
        // CUDNN_BATCHNORM_SPATIAL for now
        mode_(CUDNN_BATCHNORM_SPATIAL) {
#else
        mode_(CUDNN_BATCHNORM_SPATIAL) {
#endif
    CUDNN_ENFORCE(cudnnCreateTensorDescriptor(&data_desc_));
    CUDNN_ENFORCE(cudnnCreateTensorDescriptor(&param_desc_));
    if (epsilon_ < CUDNN_BN_MIN_EPSILON) {
      LOG(ERROR) << "Provided epsilon is smaller than CUDNN_BN_MIN_EPSILON. "
                    "Setting it to CUDNN_BN_MIN_EPSILON instead.";
      epsilon_ = CUDNN_BN_MIN_EPSILON;
    }
  }

  ~CuDNNSpatialBNOp() {
    CUDNN_ENFORCE(cudnnDestroyTensorDescriptor(data_desc_));
    CUDNN_ENFORCE(cudnnDestroyTensorDescriptor(param_desc_));
  }

  bool RunOnDevice() override {
    // CuDNN doesn't support multi-batch SpatialBN and it's NHWC order SpatialBN
    // is much slower, so in such cases fallback to SpatialBNOp<CUDAContext>.
    if (num_batches_ > 1 || order_ == StorageOrder::NHWC) {
      return SpatialBNOp<CUDAContext>::RunOnDevice();
    }
    return DispatchHelper<TensorTypes<float, at::Half>>::call(this, Input(0));
  }

  template <typename T>
  bool DoRunWithType() {
    typedef typename cudnnTypeWrapper<T>::BNParamType BNParamType;

    const auto& X = Input(INPUT);
    const auto& scale = Input(SCALE);
    const auto& bias = Input(BIAS);
    auto* Y = Output(OUTPUT);
    const int ndim = X.ndim();
    CAFFE_ENFORCE_GE(ndim, 3);
    const int N = X.dim32(0);
    const int C =
        (order_ == StorageOrder::NCHW ? X.dim32(1) : X.dim32(ndim - 1));
    CAFFE_ENFORCE_EQ(scale.size(), C);
    CAFFE_ENFORCE_EQ(bias.size(), C);
    Y->ResizeLike(X);
    const T* X_data = X.data<T>();
    const BNParamType* scale_data = scale.data<BNParamType>();
    const BNParamType* bias_data = bias.data<BNParamType>();
    T* Y_data = Y->mutable_data<T>();

    if (N > 0) {
      const std::vector<int> input_dims(X.sizes().cbegin(), X.sizes().cend());
      if (input_dims != data_dims_) {
        data_dims_ = input_dims;
        SetTensorDescriptor(
            cudnnTypeWrapper<T>::type,
            mode_,
            order_,
            input_dims,
            data_desc_,
            param_desc_);
      }
    }
    if (is_test_) {
      const auto& mean = Input(EST_MEAN);
      const auto& var = Input(EST_VAR);
      CAFFE_ENFORCE_EQ(mean.size(), C);
      CAFFE_ENFORCE_EQ(var.size(), C);
      if (N == 0) {
        return true;
      }
      CUDNN_ENFORCE(cudnnBatchNormalizationForwardInference(
          cudnn_wrapper_.inline_cudnn_handle(),
          // Note: PERSISTENT not implemented for inference
          CUDNN_BATCHNORM_SPATIAL,
          cudnnTypeWrapper<T>::kOne(),
          cudnnTypeWrapper<T>::kZero(),
          data_desc_,
          X_data,
          data_desc_,
          Y_data,
          param_desc_,
          scale_data,
          bias_data,
          mean.data<BNParamType>(),
          var.data<BNParamType>(),
          epsilon_));
    } else {
      auto* saved_mean = Output(SAVED_MEAN);
      auto* saved_inv_std = Output(SAVED_INV_STD);
      saved_mean->Resize(C);
      saved_inv_std->Resize(C);
      BNParamType* saved_mean_data = saved_mean->mutable_data<BNParamType>();
      BNParamType* saved_inv_std_data =
          saved_inv_std->mutable_data<BNParamType>();
      auto* running_mean = Output(RUNNING_MEAN);
      auto* running_var = Output(RUNNING_VAR);
      if (running_mean->size() != C) {
        running_mean->Resize(C);
        math::Set<BNParamType, CUDAContext>(
            C,
            BNParamType(0),
            running_mean->mutable_data<BNParamType>(),
            &context_);
      }
      if (running_var->size() != C) {
        running_var->Resize(C);
        math::Set<BNParamType, CUDAContext>(
            C,
            BNParamType(0),
            running_var->mutable_data<BNParamType>(),
            &context_);
      }
      BNParamType* running_mean_data =
          running_mean->mutable_data<BNParamType>();
      BNParamType* running_var_data = running_var->mutable_data<BNParamType>();
      if (N == 0) {
        math::Set<BNParamType, CUDAContext>(
            C, BNParamType(0), saved_mean_data, &context_);
        math::Set<BNParamType, CUDAContext>(
            C, BNParamType(0), saved_inv_std_data, &context_);
        return true;
      }
      const double alpha = static_cast<double>(1.0f - momentum_);

#if CUDNN_VERSION_MIN(8, 0, 0)
      // Currently not supporting CUDNN_BATCHNORM_OPS_BN_ADD_ACTIVATION
      auto op = CUDNN_BATCHNORM_OPS_BN;

      // Calculate the workspace size
      size_t workspace_size;
      CUDNN_ENFORCE(cudnnGetBatchNormalizationForwardTrainingExWorkspaceSize(
          cudnn_wrapper_.inline_cudnn_handle(),
          mode_,
          op,
          data_desc_,
          NULL,
          data_desc_,
          param_desc_,
          NULL,
          &workspace_size));

      // Calculate the reserved space size - common function for forward and backward
      size_t reserve_size;
      CUDNN_ENFORCE(cudnnGetBatchNormalizationTrainingExReserveSpaceSize(
          cudnn_wrapper_.inline_cudnn_handle(),
          mode_,
          op,
          NULL,
          data_desc_,
          &reserve_size));

      // CUDNN state is needed to access the workspace
      size_t cudnn_state_(OperatorBase::GetSingleArgument<int>("cudnn_state", 0));
      cudnn_wrapper_.with_cudnn_state(
        cudnn_state_, [&](CuDNNState* state) {
          CUDNN_ENFORCE(cudnnBatchNormalizationForwardTrainingEx(
              cudnn_wrapper_.inline_cudnn_handle(),
              mode_,
              CUDNN_BATCHNORM_OPS_BN,
              cudnnTypeWrapper<T>::kOne(),
              cudnnTypeWrapper<T>::kZero(),
              data_desc_,
              X_data,
              NULL,
              NULL,
              data_desc_,
              Y_data,
              param_desc_,
              scale_data,
              bias_data,
              alpha,
              running_mean_data,
              running_var_data,
              epsilon_,
              saved_mean_data,
              saved_inv_std_data,
              NULL,
              state->workspace().get(workspace_size),
              workspace_size,
              state->workspace().get(reserve_size),
              reserve_size));
          });
#else
      CUDNN_ENFORCE(cudnnBatchNormalizationForwardTraining(
          cudnn_wrapper_.inline_cudnn_handle(),
          mode_,
          cudnnTypeWrapper<T>::kOne(),
          cudnnTypeWrapper<T>::kZero(),
          data_desc_,
          X_data,
          data_desc_,
          Y_data,
          param_desc_,
          scale_data,
          bias_data,
          alpha,
          running_mean_data,
          running_var_data,
          epsilon_,
          saved_mean_data,
          saved_inv_std_data));
#endif // CUDNN_VERSION_MIN(8, 0, 0)
    }
    return true;
  }

 private:
  CuDNNWrapper cudnn_wrapper_;
  cudnnTensorDescriptor_t data_desc_;
  cudnnTensorDescriptor_t param_desc_;
  cudnnBatchNormMode_t mode_;

  std::vector<int> data_dims_;
};

class CuDNNSpatialBNGradientOp final : public SpatialBNGradientOp<CUDAContext> {
 public:
  USE_OPERATOR_FUNCTIONS(CUDAContext);

  CuDNNSpatialBNGradientOp(const OperatorDef& operator_def, Workspace* ws)
      : SpatialBNGradientOp<CUDAContext>(operator_def, ws),
        cudnn_wrapper_(&context_),
#if CUDNN_VERSION_MIN(7, 0, 0)
        // TODO(T31829456): The new CUDNN_BATCHNORM_SPATIAL_PERSISTENT mode was
        // introduced in CuDNN 7 for performance optimization, but it results in
        // accuracy losses in convolution models such as ResNeXt-101 and
        // video R(2+1)D. We will fall back to the normal
        // CUDNN_BATCHNORM_SPATIAL for now
        mode_(CUDNN_BATCHNORM_SPATIAL) {
#else
        mode_(CUDNN_BATCHNORM_SPATIAL) {
#endif
    CUDNN_ENFORCE(cudnnCreateTensorDescriptor(&data_desc_));
    CUDNN_ENFORCE(cudnnCreateTensorDescriptor(&param_desc_));
    if (epsilon_ < CUDNN_BN_MIN_EPSILON) {
      LOG(ERROR) << "Provided epsilon is smaller than CUDNN_BN_MIN_EPSILON. "
                    "Setting it to CUDNN_BN_MIN_EPSILON instead.";
      epsilon_ = CUDNN_BN_MIN_EPSILON;
    }
  }

  ~CuDNNSpatialBNGradientOp() {
    CUDNN_ENFORCE(cudnnDestroyTensorDescriptor(data_desc_));
    CUDNN_ENFORCE(cudnnDestroyTensorDescriptor(param_desc_));
  }

  bool RunOnDevice() override {
    // CuDNN doesn't support multi-batch SpatialBN and it's NHWC order SpatialBN
    // is much slower, so in such cases fallback to SpatialBNOp<CUDAContext>.
    if (num_batches_ > 1 || order_ == StorageOrder::NHWC) {
      return SpatialBNGradientOp<CUDAContext>::RunOnDevice();
    }
    return DispatchHelper<TensorTypes<float, at::Half>>::call(this, Input(0));
  }

  template <typename T>
  bool DoRunWithType() {
    typedef typename cudnnTypeWrapper<T>::BNParamType BNParamType;

    const auto& X = Input(INPUT);
    const auto& scale = Input(SCALE);
    const auto& dY = Input(OUTPUT_GRAD);
    const auto& saved_mean = Input(SAVED_MEAN);
    const auto& saved_rstd = Input(SAVED_INV_STD);
    auto* dX = Output(INPUT_GRAD);
    auto* dscale = Output(SCALE_GRAD);
    auto* dbias = Output(BIAS_GRAD);
    const int ndim = X.ndim();
    CAFFE_ENFORCE_GE(ndim, 3);
    const int N = X.dim32(0);
    const int C =
        (order_ == StorageOrder::NCHW ? X.dim32(1) : X.dim32(ndim - 1));
    CAFFE_ENFORCE_EQ(scale.size(), C);
    CAFFE_ENFORCE_EQ(saved_mean.size(), C);
    CAFFE_ENFORCE_EQ(saved_rstd.size(), C);
    dX->ResizeLike(X);
    dscale->ResizeLike(scale);
    dbias->ResizeLike(scale);
    const T* X_data = X.template data<T>();
    const T* scale_data = scale.template data<T>();
    const T* dY_data = dY.template data<T>();
    const BNParamType* saved_mean_data =
        saved_mean.template data<BNParamType>();
    const BNParamType* saved_rstd_data =
        saved_rstd.template data<BNParamType>();
    T* dX_data = dX->template mutable_data<T>();
    BNParamType* dscale_data = dscale->template mutable_data<BNParamType>();
    BNParamType* dbias_data = dbias->template mutable_data<BNParamType>();
    if (N == 0) {
      math::Set<BNParamType, CUDAContext>(
          C, BNParamType(0), dscale_data, &context_);
      math::Set<BNParamType, CUDAContext>(
          C, BNParamType(0), dbias_data, &context_);
      return true;
    }

    const std::vector<int> input_dims(X.sizes().cbegin(), X.sizes().cend());
    if (input_dims != data_dims_) {
      data_dims_ = input_dims;
      SetTensorDescriptor(
          cudnnTypeWrapper<T>::type,
          mode_,
          order_,
          input_dims,
          data_desc_,
          param_desc_);
    }
#if CUDNN_VERSION_MIN(8, 0, 0)
    // Currently not supporting CUDNN_BATCHNORM_OPS_BN_ADD_ACTIVATION
    auto op = CUDNN_BATCHNORM_OPS_BN;

    size_t workspace_size;
    CUDNN_ENFORCE(cudnnGetBatchNormalizationBackwardExWorkspaceSize(
        cudnn_wrapper_.inline_cudnn_handle(),
        mode_,
        op,
        data_desc_,
        NULL,
        data_desc_,
        NULL,
        data_desc_,
        param_desc_,
        NULL,
        &workspace_size));

    // Calculate the reserved space size - common function for forward and backward
    size_t reserve_size;
    CUDNN_ENFORCE(cudnnGetBatchNormalizationTrainingExReserveSpaceSize(
        cudnn_wrapper_.inline_cudnn_handle(),
        mode_,
        op,
        NULL,
        data_desc_,
        &reserve_size));

    // CUDNN state is needed to access the workspace
    size_t cudnn_state_(OperatorBase::GetSingleArgument<int>("cudnn_state", 0));
    cudnn_wrapper_.with_cudnn_state(
      cudnn_state_, [&](CuDNNState* state) {
        CUDNN_ENFORCE(cudnnBatchNormalizationBackwardEx(
            cudnn_wrapper_.inline_cudnn_handle(),
            mode_,
            op,
            cudnnTypeWrapper<T>::kOne(),
            cudnnTypeWrapper<T>::kZero(),
            cudnnTypeWrapper<T>::kOne(),
            cudnnTypeWrapper<T>::kZero(),
            data_desc_,
            X_data,
            NULL,
            NULL,
            data_desc_,
            dY_data,
            NULL,
            NULL,
            data_desc_,
            dX_data,
            param_desc_,
            scale_data,
            NULL,
            dscale_data,
            dbias_data,
            epsilon_,
            saved_mean_data,
            saved_rstd_data,
            NULL,
            state->workspace().get(workspace_size),
            workspace_size,
            state->workspace().get(reserve_size),
            reserve_size));
      });
#else
    CUDNN_ENFORCE(cudnnBatchNormalizationBackward(
        cudnn_wrapper_.inline_cudnn_handle(),
        mode_,
        cudnnTypeWrapper<T>::kOne(),
        cudnnTypeWrapper<T>::kZero(),
        cudnnTypeWrapper<T>::kOne(),
        cudnnTypeWrapper<T>::kZero(),
        data_desc_,
        X_data,
        data_desc_,
        dY_data,
        data_desc_,
        dX_data,
        param_desc_,
        scale_data,
        dscale_data,
        dbias_data,
        epsilon_,
        saved_mean_data,
        saved_rstd_data));
#endif // CUDNN_VERSION_MIN(8, 0, 0)
    return true;
  }

 private:
  CuDNNWrapper cudnn_wrapper_;
  cudnnTensorDescriptor_t data_desc_;
  cudnnTensorDescriptor_t param_desc_;
  cudnnBatchNormMode_t mode_;

  // TODO: int -> int64_t
  std::vector<int> data_dims_;
};

REGISTER_CUDNN_OPERATOR(SpatialBN, CuDNNSpatialBNOp);
REGISTER_CUDNN_OPERATOR(SpatialBNGradient, CuDNNSpatialBNGradientOp);

} // namespace caffe2

#endif // CUDNN_VERSION_MIN(5, 0, 0)