1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266
|
#include "caffe2/operators/spatial_softmax_with_loss_op.h"
namespace caffe2 {
REGISTER_CPU_OPERATOR(
SpatialSoftmaxWithLoss,
SpatialSoftmaxWithLossOp<float, CPUContext>);
REGISTER_CPU_OPERATOR(
SpatialSoftmaxWithLossGradient,
SpatialSoftmaxWithLossGradientOp<float, CPUContext>);
// Input: X (logits), T (labels); Output: P (probs), Y
OPERATOR_SCHEMA(SpatialSoftmaxWithLoss)
.NumInputs(2, 3)
.NumOutputs(2)
.TensorInferenceFunction([](const OperatorDef& def,
const vector<TensorShape>& in) {
ArgumentHelper helper(def);
vector<TensorShape> out(2);
auto logits = in[0]; // Tensor with Shape [batch_size, num_classes]
auto labels = in[1]; // Tensor with shape [batch_size, ]
auto batch_size = logits.dims().Get(0);
auto num_classes = logits.dims().Get(1);
CAFFE_ENFORCE_EQ(logits.dims_size(), 4);
CAFFE_ENFORCE_EQ(labels.dims_size(), 3);
out[0].set_data_type(logits.data_type());
out[0].add_dims(batch_size);
out[0].add_dims(num_classes);
out[0].add_dims(in[0].dims(2));
out[0].add_dims(in[0].dims(3));
// Output 2 is scalar shape, so no dims added
return out;
})
.SetDoc(R"DOC(
Combined Spatial Softmax and Cross-Entropy loss operator.
Similar to SoftmaxWithLoss, this operator computes the spatial softmax
normalized values for each layer in the batch of the given input, after which
cross-entropy loss is computed. This operator is numerically more stable than
separate Softmax and CrossEntropy ops. The inputs are a 2-D tensor
(Tensor) of size (batch_size x input_feature_dimensions) and tensor of
labels (ground truth).
Output is tensor with the probability for each label in a pixel for each example
(N x D x W x H) and averaged loss (scalar).
For spatial softmax, weighting is by x,y position of the input.
)DOC")
.Input(0, "logits", "Unscaled log probabilities")
.Input(1, "labels", "Ground truth")
.Input(
2,
"weight_tensor",
"Optional blob to be used to weight the samples for the loss. With\
spatial set, weighting is by x,y of the input")
.Output(0, "softmax", "Tensor with softmax cross entropy loss")
.Output(1, "loss", "Average loss");
// Input: X, T, P, dY; Output: dX
OPERATOR_SCHEMA(SpatialSoftmaxWithLossGradient).NumOutputs(1);
#define DONT_CARE (-1)
template <>
bool SpatialSoftmaxWithLossOp<float, CPUContext>::RunOnDevice() {
auto& X = Input(0); // Logits
auto& T = Input(1); // Labels / targets
// NOLINTNEXTLINE(cppcoreguidelines-init-variables)
int N, D;
N = X.dim32(0);
D = X.dim32(1);
auto* P =
Output(0, X.sizes(), at::dtype<float>()); // Probabilities from softmax
if (!sum_multiplier_.defined()) {
sum_multiplier_ = caffe2::empty({D}, at::dtype<float>().device(CPU));
math::Set<float, CPUContext>(
D, 1.f, sum_multiplier_.mutable_data<float>(), &context_);
} else if (sum_multiplier_.numel() != D) {
sum_multiplier_.Resize(D);
math::Set<float, CPUContext>(
D, 1.f, sum_multiplier_.mutable_data<float>(), &context_);
}
float* Pdata = P->template mutable_data<float>();
const float* weights = (InputSize() > 2 ? Input(2).data<float>() : nullptr);
CAFFE_ENFORCE_EQ(X.dim(), 4);
CAFFE_ENFORCE_EQ(T.dim(), 3);
CAFFE_ENFORCE_EQ(T.dim32(0), N);
int H = X.dim32(2);
int W = X.dim32(3);
const float* Xdata = X.data<float>();
for (int i = 0; i < N; ++i) {
for (int y = 0; y < H; ++y) {
for (int x = 0; x < W; ++x) {
// Subtract max on each cell for numerical reasons
float max_val = (-1e20f);
for (int c = 0; c < D; ++c) {
// TODO optimize
int idx = i * (H * W * D) + c * (H * W) + y * W + x;
max_val = std::max(max_val, Xdata[idx]);
}
// Exponentiate
float expsum = 0.0f;
for (int c = 0; c < D; ++c) {
int idx = i * (H * W * D) + c * (H * W) + y * W + x;
float expx = exp(Xdata[idx] - max_val);
Pdata[idx] = expx;
expsum += expx;
}
// Normalize
for (int c = 0; c < D; ++c) {
int idx = i * (H * W * D) + c * (H * W) + y * W + x;
Pdata[idx] /= expsum;
}
}
}
}
// Compute the avg cross-entropy loss
auto* avg_loss =
Output(1, vector<int64_t>(), at::dtype<float>()); // Average loss
float* avg_loss_data = avg_loss->template mutable_data<float>();
const int* label_data = T.data<int>();
float sum_label_xent = 0.0f;
float total_weight = 0.0;
for (int y = 0; y < H; y++) {
for (int x = 0; x < W; x++) {
for (int i = 0; i < N; i++) {
int label_idx = i * H * W + y * W + x;
int label = label_data[label_idx];
if (label != DONT_CARE) {
CAFFE_ENFORCE(
label < D && label >= 0,
"Label seems incorrect:label value larger than number of classes",
label_data[i],
" vs ",
D);
int idx = i * (H * W * D) + label * (H * W) + y * W + x;
// NOLINTNEXTLINE(bugprone-narrowing-conversions,cppcoreguidelines-narrowing-conversions)
float w = weights ? weights[label_idx] : 1.0;
total_weight += w;
sum_label_xent += -log(std::max(Pdata[idx], 1e-20f)) * w;
}
}
}
}
if (total_weight != 0.0) {
*avg_loss_data = sum_label_xent / total_weight;
} else {
*avg_loss_data = 0.0;
}
return true;
}
template <>
bool SpatialSoftmaxWithLossGradientOp<float, CPUContext>::RunOnDevice() {
auto& X = Input(0); // Logits
auto& T = Input(1); // Labels / targets
// Input(2) is weights if given
auto& P = Input(InputSize() - 2); // Probabilities from softmax
auto& d_avg_loss = Input(InputSize() - 1); // Gradient w.r.t. avg loss
const float* weights = (InputSize() > 4 ? Input(2).data<float>() : nullptr);
// NOLINTNEXTLINE(cppcoreguidelines-init-variables)
int N, D;
N = X.dim32(0);
D = X.dim32(1);
auto* dX = Output(0, X.sizes(), at::dtype<float>());
CAFFE_ENFORCE_EQ(T.dim32(0), N);
CAFFE_ENFORCE_EQ(X.dim(), 4);
CAFFE_ENFORCE_EQ(T.dim(), 3);
int H = X.dim32(2);
int W = X.dim32(3);
const float* Pdata = P.data<float>();
float* dX_data = dX->template mutable_data<float>();
const int* label_data = T.data<int>();
// Copy softmax probabilities into dX. All but the neuron
// corresponding to the correct label has gradient equaling e(x_j)
// which is the probability under softmax.
context_.CopyFromCPU<float>(P.numel(), Pdata, dX_data);
float total_weight = 0.0f;
for (int y = 0; y < H; ++y) {
for (int x = 0; x < W; ++x) {
for (int i = 0; i < N; ++i) {
int label_idx = i * H * W + y * W + x;
int label = label_data[label_idx];
if (label != DONT_CARE) {
int idx = i * (H * W * D) + label * (H * W) + y * W + x;
// NOLINTNEXTLINE(bugprone-narrowing-conversions,cppcoreguidelines-narrowing-conversions)
dX_data[idx] = (dX_data[idx] - 1.0);
if (weights != nullptr) {
float weight = weights[label_idx];
for (int c = 0; c < D; ++c) {
int k = i * (H * W * D) + c * (H * W) + y * W + x;
dX_data[k] *= weight;
}
total_weight += weight;
} else {
total_weight += 1.0;
}
} else {
// Set gradient to zero for coordinates where we have dont care
for (int c = 0; c < D; ++c) {
int idx = i * (H * W * D) + c * (H * W) + y * W + x;
dX_data[idx] = 0;
}
}
}
}
}
if (total_weight > 0) {
math::Scale<float, float, CPUContext>(
dX->numel(),
scale_ / total_weight,
dX->data<float>(),
dX_data,
&context_);
}
math::Scale<float, float, CPUContext>(
dX->numel(),
d_avg_loss.data<float>(),
dX->data<float>(),
dX->template mutable_data<float>(),
&context_);
return true;
}
namespace {
class GetSoftmaxWithLossGradient : public GradientMakerBase {
using GradientMakerBase::GradientMakerBase;
vector<OperatorDef> GetGradientDefs() override {
vector<string> blob_names{
{I(0), I(1), O(0), GO(1)},
};
// Add weight blob, if given
if (def_.input_size() == 3) {
blob_names.emplace(blob_names.begin() + 2, I(2));
}
return SingleGradientDef(
"SpatialSoftmaxWithLossGradient",
"",
blob_names,
vector<string>{GI(0)});
}
};
REGISTER_GRADIENT(SpatialSoftmaxWithLoss, GetSoftmaxWithLossGradient);
}
} // namespace caffe2
|