File: square_root_divide_op.cc

package info (click to toggle)
pytorch 1.13.1%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 139,252 kB
  • sloc: cpp: 1,100,274; python: 706,454; ansic: 83,052; asm: 7,618; java: 3,273; sh: 2,841; javascript: 612; makefile: 323; xml: 269; ruby: 185; yacc: 144; objc: 68; lex: 44
file content (43 lines) | stat: -rw-r--r-- 1,083 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
#include "caffe2/operators/square_root_divide_op.h"

namespace caffe2 {

REGISTER_CPU_OPERATOR(SquareRootDivide, SquareRootDivideOp<CPUContext>);
OPERATOR_SCHEMA(SquareRootDivide)
    .NumInputs(2)
    .NumOutputs(1)
    .AllowInplace({{0, 0}})
    .SetDoc(R"DOC(
Given DATA tensor with first dimension N and SCALE vector of the same size N
produces an output tensor with same dimensions as DATA. Which consists of DATA
slices. i-th slice is divided by sqrt(SCALE[i]) elementwise. If SCALE[i] == 0
output slice is identical to the input one (no scaling)

Example:

  Data = [
    [2.0, 4.0],
    [9.0, 12.0]
  ]

  SCALE = [4, 9]

  OUTPUT = [
    [1.0, 2.0],
    [3.0, 4.0]
  ]

)DOC");

class GetSquareRootDivideGradient : public GradientMakerBase {
  using GradientMakerBase::GradientMakerBase;
  vector<OperatorDef> GetGradientDefs() override {
    return SingleGradientDef(
        "SquareRootDivide",
        "",
        vector<string>{GO(0), I(1)},
        vector<string>{GI(0)});
  }
};
REGISTER_GRADIENT(SquareRootDivide, GetSquareRootDivideGradient);
} // namespace caffe2