1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349
|
#include <chrono>
#include <vector>
#include "caffe2/core/operator.h"
#include "caffe2/core/stats.h"
#include "caffe2/core/tensor.h"
namespace caffe2 {
class StatRegistryCreateOp : public Operator<CPUContext> {
public:
template <class... Args>
explicit StatRegistryCreateOp(Args&&... args)
: Operator(std::forward<Args>(args)...) {}
bool RunOnDevice() override {
*OperatorBase::Output<std::unique_ptr<StatRegistry>>(0) =
// NOLINTNEXTLINE(modernize-make-unique)
std::unique_ptr<StatRegistry>(new StatRegistry);
return true;
}
};
class StatRegistryExportOp : public Operator<CPUContext> {
public:
template <class... Args>
explicit StatRegistryExportOp(Args&&... args)
: Operator(std::forward<Args>(args)...),
reset_(GetSingleArgument<bool>("reset", true)) {}
bool RunOnDevice() override {
auto registry = InputSize() > 0
? OperatorBase::Input<std::unique_ptr<StatRegistry>>(0).get()
: &StatRegistry::get();
auto* keys = Output(0);
auto* values = Output(1);
auto* timestamps = Output(2);
auto data = registry->publish(reset_);
keys->Resize(data.size());
values->Resize(data.size());
timestamps->Resize(data.size());
auto* pkeys = keys->template mutable_data<std::string>();
auto* pvals = values->template mutable_data<int64_t>();
auto* ptimestamps = timestamps->template mutable_data<int64_t>();
int i = 0;
for (const auto& stat : data) {
// NOLINTNEXTLINE(performance-move-const-arg)
pkeys[i] = std::move(stat.key);
pvals[i] = stat.value;
ptimestamps[i] =
std::chrono::nanoseconds(stat.ts.time_since_epoch()).count();
++i;
}
return true;
}
private:
bool reset_;
};
class StatRegistryUpdateOp : public Operator<CPUContext> {
public:
template <class... Args>
explicit StatRegistryUpdateOp(Args&&... args)
: Operator(std::forward<Args>(args)...) {}
bool RunOnDevice() override {
const auto& keys = Input(0);
const auto& values = Input(1);
auto registry = InputSize() == 3
? OperatorBase::Input<std::unique_ptr<StatRegistry>>(2).get()
: &StatRegistry::get();
CAFFE_ENFORCE_EQ(keys.numel(), values.numel());
ExportedStatList data(keys.numel());
auto* pkeys = keys.data<std::string>();
auto* pvals = values.data<int64_t>();
int i = 0;
for (auto& stat : data) {
stat.key = pkeys[i];
stat.value = pvals[i];
++i;
}
registry->update(data);
return true;
}
};
class TimerInstance {
public:
explicit TimerInstance(const std::string& name)
: running_(false), stat_(name) {}
void begin() {
CAFFE_ENFORCE(!running_, "Called TimerBegin on an already running timer.");
running_ = true;
start_ = std::chrono::high_resolution_clock::now();
}
void end() {
CAFFE_ENFORCE(running_, "Called TimerEnd on a stopped timer.");
using namespace std::chrono;
auto duration = high_resolution_clock::now() - start_;
auto nanos = duration_cast<nanoseconds>(duration).count();
// NOLINTNEXTLINE(clang-diagnostic-unused-variable)
CAFFE_EVENT(stat_, time_ns, nanos);
running_ = false;
}
int64_t get_ns() {
CAFFE_ENFORCE(running_, "Called TimerGet on a stopped timer.");
using namespace std::chrono;
auto duration = high_resolution_clock::now() - start_;
auto nanos = duration_cast<nanoseconds>(duration).count();
return nanos;
}
private:
bool running_;
std::chrono::high_resolution_clock::time_point start_;
struct TimerStat {
// NOLINTNEXTLINE(modernize-pass-by-value)
CAFFE_STAT_CTOR(TimerStat);
CAFFE_AVG_EXPORTED_STAT(time_ns);
} stat_;
};
struct TimerBeginOp : public Operator<CPUContext> {
explicit TimerBeginOp(const OperatorDef& operator_def, Workspace* ws)
: Operator(operator_def, ws),
given_name_(GetSingleArgument<std::string>(
"counter_name",
operator_def.output().Get(0))),
timer_([this]() { return given_name_; }()) {}
bool RunOnDevice() override {
*OperatorBase::Output<TimerInstance*>(0) = &timer_;
timer_.begin();
return true;
}
private:
const std::string given_name_;
TimerInstance timer_;
};
struct TimerEndOp : public Operator<CPUContext> {
template <class... Args>
explicit TimerEndOp(Args&&... args) : Operator(std::forward<Args>(args)...) {}
bool RunOnDevice() override {
OperatorBase::Input<TimerInstance*>(0)->end();
return true;
}
};
struct TimerGetAndEndOp : public Operator<CPUContext> {
template <class... Args>
explicit TimerGetAndEndOp(Args&&... args)
: Operator(std::forward<Args>(args)...) {}
bool RunOnDevice() override {
int64_t nanos = OperatorBase::Input<TimerInstance*>(0)->get_ns();
OperatorBase::Input<TimerInstance*>(0)->end();
auto* res = Output(0);
res->Resize(1);
res->template mutable_data<int64_t>()[0] = nanos;
return true;
}
};
struct TimerGetOp : public Operator<CPUContext> {
template <class... Args>
explicit TimerGetOp(Args&&... args) : Operator(std::forward<Args>(args)...) {}
bool RunOnDevice() override {
int64_t nanos = OperatorBase::Input<TimerInstance*>(0)->get_ns();
auto* res = Output(0);
res->Resize();
res->template mutable_data<int64_t>()[0] = nanos;
return true;
}
};
REGISTER_CPU_OPERATOR(StatRegistryCreate, StatRegistryCreateOp);
REGISTER_CPU_OPERATOR(StatRegistryUpdate, StatRegistryUpdateOp);
REGISTER_CPU_OPERATOR(StatRegistryExport, StatRegistryExportOp);
REGISTER_CPU_OPERATOR(TimerBegin, TimerBeginOp);
REGISTER_CPU_OPERATOR(TimerEnd, TimerEndOp);
REGISTER_CPU_OPERATOR(TimerGetAndEnd, TimerGetAndEndOp);
REGISTER_CPU_OPERATOR(TimerGet, TimerGetOp);
OPERATOR_SCHEMA(StatRegistryCreate)
.NumInputs(0)
.NumOutputs(1)
.SetDoc(R"DOC(
Create a StatRegistry object that will contain a map of performance counters
keyed by name. A StatRegistry is used to gather and retrieve performance
counts throughout the caffe2 codebase.
)DOC")
.Output(0, "handle", "A Blob pointing to the newly created StatRegistry.");
OPERATOR_SCHEMA(StatRegistryUpdate)
.NumInputs(2, 3)
.NumOutputs(0)
.SetDoc(R"DOC(
Update the given StatRegistry, or the global StatRegistry,
with the values of counters for the given keys.
)DOC")
.Input(0, "keys", "1D string tensor with the key names to update.")
.Input(1, "values", "1D int64 tensor with the values to update.")
.Input(
2,
"handle",
"If provided, update the given StatRegistry. "
"Otherwise, update the global singleton.");
OPERATOR_SCHEMA(StatRegistryExport)
.NumInputs(0, 1)
.NumOutputs(3)
.Input(
0,
"handle",
"If provided, export values from given StatRegistry."
"Otherwise, export values from the global singleton StatRegistry.")
.Output(0, "keys", "1D string tensor with exported key names")
.Output(1, "values", "1D int64 tensor with exported values")
.Output(2, "timestamps", "The unix timestamp at counter retrieval.")
.Arg(
"reset",
"(default true) Whether to atomically reset the counters afterwards.");
OPERATOR_SCHEMA(TimerBegin)
.NumInputs(0)
.NumOutputs(1)
.SetDoc(R"DOC(
Start a wallclock timer, returning a scalar tensor containing a pointer to it. The timer is stopped by calling **TimerEnd**.
Github Links:
- https://github.com/pytorch/pytorch/blob/master/caffe2/operators/stats_ops.cc
)DOC")
.Arg("counter_name", "(*str*): name of the timer object; if not set use output name")
.Output(0, "timer", "(*Tensor`<ptr>`*): pointer to a timer object");
OPERATOR_SCHEMA(TimerEnd)
.NumInputs(1)
.NumOutputs(0)
.SetDoc(R"DOC(
Stop a timer started with **TimerBegin**. Publishes a CAFFE_EVENT.
Github Links:
- https://github.com/pytorch/pytorch/blob/master/caffe2/operators/stats_ops.cc
)DOC")
.Input(0, "timer", "(*Tensor`<ptr>`*): pointer to a timer object; obtained from **TimerBegin** op");
OPERATOR_SCHEMA(TimerGetAndEnd)
.NumInputs(1)
.NumOutputs(1)
.SetDoc(R"DOC(
Queries the current time of a timer in nanos, stops the timer publishing a CAFFE_EVENT.
Github Links:
- https://github.com/pytorch/pytorch/blob/master/caffe2/operators/stats_ops.cc
<details>
<summary> <b>Example</b> </summary>
**Code**
```
workspace.ResetWorkspace()
timerbegin_op = core.CreateOperator(
"TimerBegin",
[],
["timer"]
)
timerget_op = core.CreateOperator(
"TimerGet",
["timer"],
["nanos"]
)
timerend_op = core.CreateOperator(
"TimerEnd",
["timer"],
[]
)
timergetandend_op = core.CreateOperator(
"TimerGetAndEnd",
["timer"],
["nanos"]
)
// Test TimerBegin/TimerGet/TimerEnd
workspace.RunOperatorOnce(timerbegin_op)
print("timer:", workspace.FetchBlob("timer"))
workspace.RunOperatorOnce(timerget_op)
print("nanos:", workspace.FetchBlob("nanos"))
workspace.RunOperatorOnce(timerend_op)
// Test TimerBegin/TimerGetAndEnd
workspace.RunOperatorOnce(timerbegin_op)
print("timer:", workspace.FetchBlob("timer"))
workspace.RunOperatorOnce(timergetandend_op)
print("nanos:", workspace.FetchBlob("nanos"))
```
**Result**
```
timer: b'timer, a C++ native class of type caffe2::TimerInstance*.'
nanos: 361140
timer: b'timer, a C++ native class of type caffe2::TimerInstance*.'
nanos: [252250]
```
</details>
)DOC")
.Input(0, "timer", "(*Tensor`<ptr>`*): pointer to a timer object; obtained from **TimerBegin** op")
.Output(0, "nanos", "(*Tensor`<int64>`*): scalar tensor containing time in nanoseconds");
OPERATOR_SCHEMA(TimerGet)
.NumInputs(1)
.NumOutputs(1)
.SetDoc(R"DOC(
Queries the current time of a timer object in nanoseconds.
Github Links:
- https://github.com/pytorch/pytorch/blob/master/caffe2/operators/stats_ops.cc
)DOC")
.Input(0, "timer", "(*Tensor`<ptr>`*): pointer to a timer object; obtained from **TimerBegin** op")
.Output(0, "nanos", "(*Tensor`<int64>`*): scalar containing time in nanoseconds");
CAFFE_KNOWN_TYPE(TimerInstance*);
CAFFE_KNOWN_TYPE(std::unique_ptr<caffe2::StatRegistry>);
} // namespace caffe2
|