File: stats_put_ops.cc

package info (click to toggle)
pytorch 1.13.1%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 139,252 kB
  • sloc: cpp: 1,100,274; python: 706,454; ansic: 83,052; asm: 7,618; java: 3,273; sh: 2,841; javascript: 612; makefile: 323; xml: 269; ruby: 185; yacc: 144; objc: 68; lex: 44
file content (113 lines) | stat: -rw-r--r-- 3,912 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
#include "caffe2/operators/stats_put_ops.h"
#include "caffe2/core/operator.h"
#include "caffe2/core/stats.h"
#include "caffe2/core/tensor.h"

namespace caffe2 {
#define REGISTER_TEMPLATED_STAT_PUT_OP(OP_NAME, STAT_NAME, STAT_MACRO) \
  struct STAT_NAME {                                                   \
    CAFFE_STAT_CTOR(STAT_NAME);                                        \
    STAT_MACRO(stat_value);                                            \
  };                                                                   \
  REGISTER_CPU_OPERATOR(OP_NAME, TemplatePutOp<STAT_NAME>);

// NOLINTNEXTLINE(modernize-pass-by-value,cppcoreguidelines-avoid-non-const-global-variables)
REGISTER_TEMPLATED_STAT_PUT_OP(
    AveragePut,
    AveragePutStat,
    CAFFE_AVG_EXPORTED_STAT)

OPERATOR_SCHEMA(AveragePut)
    .NumInputs(1)
    .NumOutputs(0)
    .Arg(
        "name",
        "(*str*): name of the stat. If not present, then uses name of input blob")
    .Arg(
        "magnitude_expand",
        "(*int64_t*): number to multiply input values by (used when inputting floats, as stats can only receive integers")
    .Arg(
        "bound",
        "(*boolean*): whether or not to clamp inputs to the max inputs allowed")
    .Arg(
        "default_value",
        "(*float*): Optionally provide a default value for receiving empty tensors")
    .SetDoc(R"DOC(
    Consume a value and pushes it to the global stat registry as an average.

    Github Links:
    - https://github.com/pytorch/pytorch/blob/master/caffe2/operators/stats_put_ops.cc

        )DOC")
    .Input(
        0,
        "value",
        "(*Tensor`<number>`*): A scalar tensor, representing any numeric value");

// NOLINTNEXTLINE(modernize-pass-by-value,cppcoreguidelines-avoid-non-const-global-variables)
REGISTER_TEMPLATED_STAT_PUT_OP(
    IncrementPut,
    IncrementPutStat,
    CAFFE_EXPORTED_STAT)

OPERATOR_SCHEMA(IncrementPut)
    .NumInputs(1)
    .NumOutputs(0)
    .Arg(
        "name",
        "(*str*): name of the stat. If not present, then uses name of input blob")
    .Arg(
        "magnitude_expand",
        "(*int64_t*): number to multiply input values by (used when inputting floats, as stats can only receive integers")
    .Arg(
        "bound",
        "(*boolean*): whether or not to clamp inputs to the max inputs allowed")
    .Arg(
        "default_value",
        "(*float*): Optionally provide a default value for receiving empty tensors")
    .SetDoc(R"DOC(
    Consume a value and pushes it to the global stat registry as an sum.

    Github Links:
    - https://github.com/pytorch/pytorch/blob/master/caffe2/operators/stats_put_ops.cc

        )DOC")
    .Input(
        0,
        "value",
        "(*Tensor`<number>`*): A scalar tensor, representing any numeric value");

// NOLINTNEXTLINE(modernize-pass-by-value,cppcoreguidelines-avoid-non-const-global-variables)
REGISTER_TEMPLATED_STAT_PUT_OP(
    StdDevPut,
    StdDevPutStat,
    CAFFE_STDDEV_EXPORTED_STAT)

OPERATOR_SCHEMA(StdDevPut)
    .NumInputs(1)
    .NumOutputs(0)
    .Arg(
        "name",
        "(*str*): name of the stat. If not present, then uses name of input blob")
    .Arg(
        "magnitude_expand",
        "(*int64_t*): number to multiply input values by (used when inputting floats, as stats can only receive integers")
    .Arg(
        "bound",
        "(*boolean*): whether or not to clamp inputs to the max inputs allowed")
    .Arg(
        "default_value",
        "(*float*): Optionally provide a default value for receiving empty tensors")
    .SetDoc(R"DOC(
      Consume a value and pushes it to the global stat registry as an standard deviation.

      Github Links:
      - https://github.com/pytorch/pytorch/blob/master/caffe2/operators/stats_put_ops.cc

        )DOC")
    .Input(
        0,
        "value",
        "(*Tensor`<number>`*): A scalar tensor, representing any numeric value");

} // namespace caffe2