File: top_k_heap_selection.cuh

package info (click to toggle)
pytorch 1.13.1%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 139,252 kB
  • sloc: cpp: 1,100,274; python: 706,454; ansic: 83,052; asm: 7,618; java: 3,273; sh: 2,841; javascript: 612; makefile: 323; xml: 269; ruby: 185; yacc: 144; objc: 68; lex: 44
file content (303 lines) | stat: -rw-r--r-- 8,908 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
#ifndef CAFFE2_OPERATORS_TOP_K_HEAP_SELECTION_H_
#define CAFFE2_OPERATORS_TOP_K_HEAP_SELECTION_H_

#include "caffe2/utils/GpuBitonicSort.cuh"
#include "caffe2/utils/GpuDefs.cuh"
#include "caffe2/utils/math.h"
#include <cuda_runtime.h>

namespace caffe2 {

template <typename K, typename V>
struct LTComp {
  __device__ inline bool
  operator()(const K& kA, const V& vA, const K& kB, const V& vB) const {
    // FIXME: adding value comparison is slow
    return (kA < kB) || ((kA == kB) && (vA < vB));
  }
};

template <typename K, typename V>
struct GTComp {
  __device__ inline bool
  operator()(const K& kA, const V& vA, const K& kB, const V& vB) const {
    // FIXME: adding value comparison is slow
    // FIXME: it's vA < vB because the sorting order for V (aka
    // indices) is different in our use case
    return (kA > kB) || ((kA == kB) && (vA < vB));
  }
};

constexpr size_t getHeapSmemSize(
    size_t keySize,
    size_t valueSize,
    int numThreads,
    int heapSize) {
  return (numThreads / kWarpSize) * heapSize * (keySize + valueSize);
}

// Per-warp heap structure in shared memory:
// [key_0, ..., key_(HeapSize-2)], [empty element] (warp 0)
// ...
// [key_0, ..., key_(HeapSize-2)], [empty element] (warp n-1)
// [value_0, ..., value_(HeapSize-2)], [empty element] (warp 0)
// ...
// [value_0, ..., value_(HeapSize-2)], [empty element] (warp n-1)

// Dir == true means we are selecting the largest values, thus
// the heap is a min-heap
template <typename K, typename V, int HeapSize, bool Dir>
__device__ inline void warpHeapInsert(K k, V v, K* keyHeap, V* valueHeap) {
  // Replace head if we are < head
  bool valid = Dir ? (k > keyHeap[0]) : (k < keyHeap[0]);

  // Even though this is the single-thread case, another preceding
  // thread in the warp may have inserted in a new element that
  // supersedes our element and thus our attempt at an insert would do
  // nothing.
  if (!valid) {
    return;
  }

  // Swap with head if valid
  K currentKey = k;
  V currentValue = v;

  keyHeap[0] = currentKey;
  valueHeap[0] = currentValue;

  // The number of interior nodes in the heap is log2(HeapSize / 2):
  // heap size 8 means there are 7 elements in the heap, indices 0-6
  // (0 12 3456)
  // log2(8 / 2) = 2 levels of interior nodes for heap size 8 (0 and 12)
  int i = 0;
#if !defined(USE_ROCM)
#pragma unroll
#endif
  for (int levels = 0; levels < math::IntegerLog2(HeapSize / 2); ++levels) {
    int leftChild = i * 2 + 1;
    int rightChild = leftChild + 1;
    K leftKey = keyHeap[leftChild];
    K rightKey = keyHeap[rightChild];

    // What child might we want to swap with (max heap = larger child;
    // min heap = smaller child)
    bool swap = Dir ? (leftKey < rightKey) : (leftKey > rightKey);
    int childToSwap = swap ? leftChild : rightChild;
    K keyChildToSwap = swap ? leftKey : rightKey;

    // If we're bigger than both children (max heap), or smaller than
    // both children (min heap), then we do nothing for the rest of
    // the iterations
    valid =
        Dir ? !(currentKey < keyChildToSwap) : !(currentKey > keyChildToSwap);

    // Swap with childToSwap if still valid
    keyHeap[i] = valid ? keyChildToSwap : currentKey;
    valueHeap[i] = valid ? valueHeap[childToSwap] : currentValue;

    keyHeap[childToSwap] = valid ? currentKey : keyChildToSwap;
    valueHeap[childToSwap] = valid ? currentValue : valueHeap[childToSwap];

    i = childToSwap;

    // This is our new element to potentially downheap
    currentKey = keyHeap[i];
    currentValue = valueHeap[i];
  }
}

template <typename K, typename V, int HeapSize, bool Dir>
__device__ inline void
warpHeap(K k, V v, K& keyHeapHead, K* keyHeap, V* valueHeap) {
  // All threads in the warp have elements
  bool wantInsert = Dir ? (k > keyHeapHead) : (k < keyHeapHead);

  // Find out all the lanes that have elements to add to the heap
#if defined(USE_ROCM)
  unsigned long long int vote = __ballot(wantInsert);

  if (!vote) {
    // Everything the warp has is smaller than our heap
    return;
  }

  // Otherwise, we want to serialize execution of the threads
  // that have elements
  int index = __popcll(getLaneMaskLt() & vote);
  int total = __popcll(vote);
#else
  unsigned int vote = __ballot_sync(__activemask(), wantInsert);

  if (!vote) {
    // Everything the warp has is smaller than our heap
    return;
  }

  // Otherwise, we want to serialize execution of the threads
  // that have elements
  int index = __popc(getLaneMaskLt() & vote);
  int total = __popc(vote);
#endif  // _USE_ROCM

  // FIXME: try switch statement and explicitly handle cases
  // FIXME: how do cases work?
  for (int i = 0; i < total; ++i) {
    if (index == i && wantInsert) {
      // Insert into our heap
      warpHeapInsert<K, V, HeapSize, Dir>(k, v, keyHeap, valueHeap);

      // Make sure all smem writes are visible
      __threadfence_block();
    }
  }

  // Re-broadcast the new heap head
  // FIXME: consider each updater above will broadcast its value with
  // a shuffle instead?
  keyHeapHead = keyHeap[0];
}

template <typename K, typename V, int ThreadsPerBlock, int HeapSize, bool Dir>
class Heap {
 public:
  static constexpr size_t getSmemSize() {
    return getHeapSmemSize(sizeof(K), sizeof(V), ThreadsPerBlock, HeapSize);
  }

  __device__ Heap(void* smem, K initKey, V initVal) {
    heapBase = smem;

    int warpId = threadIdx.x / kWarpSize;
    int laneId = getLaneId();

    auto kStart = getKeyStart();
    heapK = &kStart[warpId * HeapSize];
    auto vStart = getValueStart();
    heapV = &vStart[warpId * HeapSize];

    heapHead = initKey;

    if (HeapSize < kWarpSize) {
      if (laneId < HeapSize) {
        heapK[laneId] = initKey;
        heapV[laneId] = initVal;
      }
    } else {
#pragma unroll
      for (int i = 0; i < HeapSize / kWarpSize; ++i) {
        heapK[laneId + i * kWarpSize] = initKey;
        heapV[laneId + i * kWarpSize] = initVal;
      }
    }
  }

  // Returns a pointer to the start of our block-wide key storage
  inline __device__ K* getKeyStart() {
    return (K*)heapBase;
  }

  // Returns a pointer to the start of our block-wide value storage
  inline __device__ V* getValueStart() {
    constexpr int warpsPerBlock = ThreadsPerBlock / kWarpSize;
    return (V*)&getKeyStart()[warpsPerBlock * HeapSize];
  }

  // Returns a pointer past the end of our block-wide heap storage
  inline __device__ void* getStorageEnd() {
    constexpr int warpsPerBlock = ThreadsPerBlock / kWarpSize;
    return getValueStart() + (warpsPerBlock * HeapSize);
  }

  inline __device__ void add(K k, V v) {
    warpHeap<K, V, HeapSize, Dir>(k, v, heapHead, heapK, heapV);
  }

  // Reduce all per-warp heaps to a unified, sorted list
  inline __device__ void reduceHeaps() {
    constexpr int allHeapSize = (ThreadsPerBlock / kWarpSize) * HeapSize;

    if (Dir) {
      bitonicSort<GTComp<K, V>, K, V, allHeapSize, ThreadsPerBlock>(
          getKeyStart(), getValueStart(), GTComp<K, V>());
    } else {
      bitonicSort<LTComp<K, V>, K, V, allHeapSize, ThreadsPerBlock>(
          getKeyStart(), getValueStart(), LTComp<K, V>());
    }
  }

 private:
  void* heapBase;
  K heapHead;
  K* heapK;
  V* heapV;
};

template <
    typename V,
    typename IndexType,
    typename OutIndexType,
    int ThreadsPerBlock,
    int HeapSize,
    bool Dir>
__global__ void selectRowsViaHeap(
    const V* input, // m x n
    V* outKeys, // m x k
    OutIndexType* outIndices, // m x k
    V initVal,
    IndexType initIndex,
    int m,
    int n,
    int k) {
  extern __shared__ float smem[];

  Heap<V, IndexType, ThreadsPerBlock, HeapSize, Dir> heap(
      smem, initVal, initIndex);

  auto inputStart = &input[blockIdx.x * n];

  // FIXME choose desired unroll level
  constexpr int Unroll = 1;
  V vals[Unroll];

  for (int i = threadIdx.x; i < n; i += blockDim.x * Unroll) {
#if !defined(USE_ROCM)
#pragma unroll
#endif
    for (int j = 0; j < Unroll; ++j) {
      vals[j] = inputStart[i + j * blockDim.x];
    }

#if !defined(USE_ROCM)
#pragma unroll
#endif
    for (int j = 0; j < Unroll; ++j) {
      heap.add(vals[j], (IndexType)i + j * blockDim.x);
    }
  }

  // When finished, we restructure the heaps in shared memory
  // The heaps are actually of size HeapSize - 1 (e.g., 32 -> 31); the
  // extra element should have remained untouched, so we can still
  // sort things in-place as a power of 2.
  __syncthreads();

  heap.reduceHeaps();

  auto outKeysStart = &outKeys[blockIdx.x * k];
  auto outIndicesStart = &outIndices[blockIdx.x * k];

  auto heapK = heap.getKeyStart();
  auto heapV = heap.getValueStart();

  // Write out the final k-selected values; they should be all
  // together
  for (int i = threadIdx.x; i < n && i < k; i += blockDim.x) {
    outKeysStart[i] = heapK[i];
    outIndicesStart[i] = (OutIndexType)heapV[i];
  }
}

} // namespace caffe2

#endif // CAFFE2_OPERATORS_TOP_K_HEAP_SELECTION_H_