1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463
|
#ifndef CAFFE2_OPERATORS_TOP_K_RADIX_SELECTION_H_
#define CAFFE2_OPERATORS_TOP_K_RADIX_SELECTION_H_
#include "caffe2/core/common_gpu.h"
#include "caffe2/utils/GpuDefs.cuh"
#include "caffe2/utils/GpuScanUtils.cuh"
#include "caffe2/utils/GpuAtomics.cuh"
#include "caffe2/utils/math.h"
#include <cuda_runtime.h>
namespace caffe2 {
// From the cutorch library
template <typename T>
struct AddOp {
__device__ __forceinline__ T operator()(T &lhs, T &rhs) {
return lhs + rhs;
}
};
template <typename T>
struct TopKTypeConfig {};
template <>
struct TopKTypeConfig<float> {
typedef unsigned int RadixType;
// Converts a float to an integer representation with the same
// sorting; i.e., for floats f1, f2:
// if f1 < f2 then convert(f1) < convert(f2)
// We use this to enable radix selection of floating-point values.
// This also gives a relative order for NaNs, but that's ok, as they
// will all be adjacent
static inline __device__ RadixType convert(float v) {
RadixType x = __float_as_int(v);
RadixType mask = (x & 0x80000000) ? 0xffffffff : 0x80000000;
return (x ^ mask);
}
static inline __device__ float deconvert(RadixType v) {
RadixType mask = (v & 0x80000000) ? 0x80000000 : 0xffffffff;
return __int_as_float(v ^ mask);
}
};
template <>
struct TopKTypeConfig<unsigned char> {
typedef unsigned int RadixType;
static inline __device__ RadixType convert(unsigned char v) {
return v;
}
static inline __device__ unsigned char deconvert(RadixType v) {
return v;
}
};
template <>
struct TopKTypeConfig<char> {
typedef unsigned int RadixType;
static inline __device__ RadixType convert(char v) {
return 128u + v;
}
static inline __device__ char deconvert(RadixType v) {
return v - 128;
}
};
template <>
struct TopKTypeConfig<short> {
typedef unsigned int RadixType;
static inline __device__ RadixType convert(short v) {
static_assert(sizeof(short) == 2, "");
return 32768u + v;
}
static inline __device__ short deconvert(RadixType v) {
return v - 32768;
}
};
template <>
struct TopKTypeConfig<int> {
typedef unsigned int RadixType;
static inline __device__ RadixType convert(int v) {
static_assert(sizeof(int) == 4, "");
return 2147483648u + v;
}
static inline __device__ int deconvert(RadixType v) {
return v - 2147483648u;
}
};
template <>
struct TopKTypeConfig<int64_t> {
typedef unsigned long long int RadixType;
static inline __device__ RadixType convert(int64_t v) {
//static_assert fails on windows, so leave it as CUDA_KERNEL_ASSERT
static_assert(sizeof(int64_t) == 8, "");
return 9223372036854775808ull + v;
}
static inline __device__ int64_t deconvert(RadixType v) {
return v - 9223372036854775808ull;
}
};
template <>
struct TopKTypeConfig<double> {
typedef unsigned long long int RadixType;
static inline __device__ RadixType convert(double v) {
RadixType x = __double_as_longlong(v);
RadixType mask = -((x >> 63)) | 0x8000000000000000;
return (x ^ mask);
}
static inline __device__ double deconvert(RadixType v) {
RadixType mask = ((v >> 63) - 1) | 0x8000000000000000;
return __longlong_as_double(v ^ mask);
}
};
// This function counts the distribution of all input values in a
// slice we are selecting by radix digit at `radixDigitPos`, but only
// those that pass the filter `((v & desiredMask) == desired)`.
// This produces and broadcasts the seen counts for a single block only.
// `smem` must have at least `RadixSize` elements.
template <typename DataType,
typename BitDataType,
typename CountType,
int RadixSize,
int RadixBits>
__device__ void countRadixUsingMask(CountType counts[RadixSize],
CountType* smem,
BitDataType desired,
BitDataType desiredMask,
int radixDigitPos,
int sliceSize,
const DataType* data) {
// Clear out per-thread counts from a previous round
#pragma unroll
for (int i = 0; i < RadixSize; ++i) {
counts[i] = 0;
}
if (threadIdx.x < RadixSize) {
smem[threadIdx.x] = 0;
}
__syncthreads();
// Scan over all the data. Upon a read, the warp will accumulate
// counts per each digit in the radix using warp voting.
for (int i = threadIdx.x; i < sliceSize; i += blockDim.x) {
BitDataType val = TopKTypeConfig<DataType>::convert(data[i]);
bool hasVal = ((val & desiredMask) == desired);
BitDataType digitInRadix = Bitfield<BitDataType>::getBitfield(val, radixDigitPos, RadixBits);
#pragma unroll
for (unsigned int j = 0; j < RadixSize; ++j) {
bool vote = hasVal && (digitInRadix == j);
#if defined(USE_ROCM)
counts[j] += __popcll(__ballot(vote));
#else
counts[j] += __popc(__ballot_sync(__activemask(), vote));
#endif // USE_ROCM
}
}
// Now, for each warp, sum values
if (getLaneId() == 0) {
#pragma unroll
for (unsigned int i = 0; i < RadixSize; ++i) {
gpu_atomic_add(&smem[i], counts[i]);
}
}
__syncthreads();
// For each thread, read in the total counts
#pragma unroll
for (unsigned int i = 0; i < RadixSize; ++i) {
counts[i] = smem[i];
}
__syncthreads();
}
// Over what radix we are selecting values
#define RADIX_BITS 2 // digits are base-(2 ^ RADIX_BITS)
#define RADIX_SIZE 4 // 2 ^ RADIX_BITS
#define RADIX_MASK (RADIX_SIZE - 1)
// This finds the unique value `v` that matches the pattern
// ((v & desired) == desiredMask) in our sorted int format
template <typename DataType, typename BitDataType>
__device__ DataType findPattern(DataType* smem,
const DataType* data,
int sliceSize,
BitDataType desired,
BitDataType desiredMask) {
if (threadIdx.x < kWarpSize) {
smem[threadIdx.x] = (DataType) 0;
}
__syncthreads();
// All threads participate in the loop, in order to sync on the flag
int numIterations = math::RoundUp(sliceSize, (int) blockDim.x);
for (int i = threadIdx.x; i < numIterations; i += blockDim.x) {
bool inRange = (i < sliceSize);
DataType v = inRange ? data[i] : (DataType)0;
if (inRange && ((TopKTypeConfig<DataType>::convert(v) & desiredMask) == desired)) {
// There should not be conflicts if we are using findPattern,
// since the result is unique
smem[0] = (DataType)1;
smem[1] = v; // can't use val as the flag, since it could be 0
}
__syncthreads();
DataType found = smem[0];
DataType val = smem[1];
__syncthreads();
// Check to see if a thread found the value
if (found != (DataType)0) {
// all threads return this value
return val;
}
}
// should not get here
CUDA_KERNEL_ASSERT(false);
return (DataType)0;
}
// Returns the top-Kth element found in the data using radix selection
template <typename DataType, typename BitDataType, bool Order>
__device__ void radixSelect(const DataType* data,
int k,
int sliceSize,
int* smem,
DataType* topK) {
// Per-thread buckets into which we accumulate digit counts in our
// radix
int counts[RADIX_SIZE];
// We only consider elements x such that (x & desiredMask) == desired
// Initially, we consider all elements of the array, so the above
// statement is true regardless of input.
BitDataType desired = 0;
BitDataType desiredMask = 0;
// We are looking for the top kToFind-th element when iterating over
// digits; this count gets reduced by elimination when counting
// successive digits
int kToFind = k <= sliceSize ? k : sliceSize;
// We start at the most significant digit in our radix, scanning
// through to the least significant digit
#pragma unroll
for (int digitPos = sizeof(DataType) * 8 - RADIX_BITS;
digitPos >= 0;
digitPos -= RADIX_BITS) {
// Count radix distribution for the current position and reduce
// across all threads
countRadixUsingMask<DataType, BitDataType,
int,
RADIX_SIZE, RADIX_BITS>(
counts, smem,
desired, desiredMask, digitPos,
sliceSize, data);
// All threads participate in the comparisons below to know the
// final result
#define CHECK_RADIX(i) \
int count = counts[i]; \
\
/* All threads have the same value in counts here, so all */ \
/* threads will return from the function. */ \
if (count == 1 && kToFind == 1) { \
/* There is a unique answer. */ \
desired = Bitfield<BitDataType>::setBitfield(desired, i, digitPos, RADIX_BITS); \
desiredMask = \
Bitfield<BitDataType>::setBitfield(desiredMask, RADIX_MASK, digitPos, RADIX_BITS); \
\
/* The answer is now the unique element v such that: */ \
/* (v & desiredMask) == desired */ \
/* However, we do not yet know what the actual element is. We */ \
/* need to perform a search through the data to find the */ \
/* element that matches this pattern. */ \
*topK = findPattern<DataType, BitDataType>( \
(DataType*) smem, data, sliceSize, \
desired, desiredMask); \
return; \
} \
\
if (count >= kToFind) { \
desired = Bitfield<BitDataType>::setBitfield(desired, i, digitPos, RADIX_BITS); \
desiredMask = \
Bitfield<BitDataType>::setBitfield(desiredMask, RADIX_MASK, digitPos, RADIX_BITS); \
\
/* The top-Kth element v must now be one such that: */ \
/* (v & desiredMask == desired) */ \
/* but we haven't narrowed it down; we must check the next */ \
/* least-significant digit */ \
break; \
} \
\
kToFind -= count \
if (Order) {
// Process in descending order
#pragma unroll
for (int i = RADIX_SIZE - 1; i >= 0; --i) {
CHECK_RADIX(i);
}
} else {
// Process in ascending order
#pragma unroll
for (int i = 0; i < RADIX_SIZE; ++i) {
CHECK_RADIX(i);
}
}
#undef CHECK_RADIX
} // end digitPos for
// There is no unique result, but there is a non-unique result
// matching `desired` exactly
*topK = TopKTypeConfig<DataType>::deconvert(desired);
}
template <typename T, bool Order, typename IndicesType>
__global__ void gatherTopK(const T* inputPtr,
int inputSliceSize,
int outputSliceSize, // aka `k`
int numInputSlices,
T* topKPtr,
IndicesType* indicesPtr) {
__shared__ int smem[kWarpSize]; // one per each warp, up to warp limit
int slice = blockIdx.x;
if (slice >= numInputSlices) {
return;
}
// Find the start offset for our slice
const T* inputSliceStart = &inputPtr[slice * inputSliceSize];
T* topKSliceStart = &topKPtr[slice * outputSliceSize];
IndicesType* indicesSliceStart = &indicesPtr[slice * outputSliceSize];
// Find the k-th highest element in our input
T topKValue = (T)0;
radixSelect<T, typename TopKTypeConfig<T>::RadixType, Order>(
inputSliceStart, outputSliceSize,
inputSliceSize,
smem, &topKValue);
// Every value that is strictly less/greater than `pattern`
// (depending on sort dir) in sorted int format is in the top-K.
// The top-K value itself might not be unique.
//
// Since there are a variable number of elements that we see that
// are within the top-k, we don't know at what index to write out
// the resulting values.
// In order to get this, we perform an exclusive prefix sum of
// `hasTopK`. This will return the resulting index into which we
// need to write the result, if a thread has a result.
// All threads need to participate in the loop and the prefix sum,
// but not necessarily in the load; hence loop bounds being rounded
// up to a multiple of the block dim.
int numIterations = math::RoundUp(inputSliceSize, (int) blockDim.x);
int writeIndexStart = 0;
for (int i = threadIdx.x; i < numIterations; i += blockDim.x) {
bool inRange = (i < inputSliceSize);
T v = inRange ? inputSliceStart[i] : (T)0;
bool hasTopK;
if (Order) {
hasTopK = inRange && (v > topKValue);
} else {
hasTopK = inRange && (v < topKValue);
}
int index;
int carry;
exclusiveBinaryPrefixScan<int, true>(smem, hasTopK, &index, &carry, AddOp<int>());
if (hasTopK) {
int writeIndex = writeIndexStart + index;
CUDA_KERNEL_ASSERT(writeIndex < outputSliceSize);
int topKOffset = writeIndex;
int indexOffset = writeIndex;
topKSliceStart[topKOffset] = v;
indicesSliceStart[indexOffset] = i;
}
writeIndexStart += carry;
}
// We need to fill in the rest with actual == top-K values.
// The number that we need is outputSliceSize -
// writeIndexStart. There might be more than that number available,
// in which case we have to choose the first seen set. We do this
// via a prefix sum to calculate indices for writing results.
CUDA_KERNEL_ASSERT(outputSliceSize >= writeIndexStart);
int topKRemaining = (outputSliceSize - writeIndexStart);
for (int i = threadIdx.x; i < numIterations; i += blockDim.x) {
bool inRange = (i < inputSliceSize);
T v = inRange ? inputSliceStart[i] : (T)0;
bool hasTopK = inRange && (v == topKValue);
int index;
int carry;
exclusiveBinaryPrefixScan<int, true>(smem, hasTopK, &index, &carry, AddOp<int>());
if (hasTopK && index < topKRemaining) {
int writeIndex = writeIndexStart + index;
CUDA_KERNEL_ASSERT(writeIndex < outputSliceSize);
int topKOffset = writeIndex;
int indexOffset = writeIndex;
topKSliceStart[topKOffset] = v;
indicesSliceStart[indexOffset] = i;
}
if (carry >= topKRemaining) {
break;
}
topKRemaining -= carry;
writeIndexStart += carry;
}
}
#undef RADIX_BITS
#undef RADIX_SIZE
#undef RADIX_MASK
} // namespace caffe2
#endif // CAFFE2_OPERATORS_TOP_K_RADIX_SELECTION_H_
|