1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169
|
#include "caffe2/operators/transpose_op.h"
#include <algorithm>
#include <limits>
#include <type_traits>
#include <vector>
#include "caffe2/core/context_gpu.h"
#include "caffe2/core/cudnn_wrappers.h"
#include "caffe2/core/types.h"
#include "caffe2/utils/math.h"
namespace caffe2 {
namespace {
class CuDNNTransposeOp final : public Operator<CUDAContext> {
public:
USE_OPERATOR_FUNCTIONS(CUDAContext);
template <class... Args>
explicit CuDNNTransposeOp(Args&&... args)
: Operator<CUDAContext>(std::forward<Args>(args)...),
cudnn_wrapper_(&context_),
axes_(OperatorBase::GetRepeatedArgument<int>("axes")) {
// Checks the legality of axes_: it should be from 0 to axes_.size().
std::vector<int> axes_sorted(axes_);
std::sort(axes_sorted.begin(), axes_sorted.end());
for (std::size_t i = 0; i < axes_sorted.size(); ++i) {
if (axes_sorted[i] != i) {
CAFFE_THROW("Axes should be a permutation of 0 to ndim.");
}
}
CUDNN_ENFORCE(cudnnCreateTensorDescriptor(&X_desc_));
CUDNN_ENFORCE(cudnnCreateTensorDescriptor(&Y_desc_));
}
~CuDNNTransposeOp() override {
CUDNN_ENFORCE(cudnnDestroyTensorDescriptor(X_desc_));
CUDNN_ENFORCE(cudnnDestroyTensorDescriptor(Y_desc_));
}
bool RunOnDevice() override {
return DispatchHelper<TensorTypes<float, int>>::call(this, Input(0));
}
template <typename T>
bool DoRunWithType() {
const auto& X = Input(0);
const int ndim = X.dim();
if (axes_.empty()) {
axes_.resize(ndim);
std::iota(axes_.rbegin(), axes_.rend(), 0);
} else {
CAFFE_ENFORCE_EQ(axes_.size(), ndim);
}
std::vector<std::int64_t> X_dims = X.sizes().vec();
std::vector<std::int64_t> Y_dims(ndim);
for (int i = 0; i < ndim; ++i) {
Y_dims[i] = X_dims[axes_[i]];
}
auto* Y = Output(0, Y_dims, at::dtype<T>());
const T* X_data = X.template data<T>();
T* Y_data = Y->template mutable_data<T>();
if (X.numel() == 0) {
return true;
}
if (!IsFloatType<T>() || !IsCuDNNValidTensor(X)) {
math::Transpose<std::int64_t, T, CUDAContext>(
ndim, X_dims.data(), axes_.data(), X_data, Y_data, &context_);
return true;
}
if (cudnnTypeWrapper<T>::type != cached_dtype_ ||
X_dims != cached_X_dims_) {
SetTensorDescriptor(cudnnTypeWrapper<T>::type, X_dims, Y_dims);
cached_dtype_ = cudnnTypeWrapper<T>::type;
cached_X_dims_ = X_dims;
}
CUDNN_ENFORCE(cudnnTransformTensor(
cudnn_wrapper_.inline_cudnn_handle(),
cudnnTypeWrapper<T>::kOne(),
X_desc_,
X_data,
cudnnTypeWrapper<T>::kZero(),
Y_desc_,
Y_data));
return true;
}
private:
template <typename T>
constexpr bool IsFloatType() const {
return std::is_same<T, float>::value || std::is_same<T, double>::value ||
std::is_same<T, at::Half>::value;
}
bool IsCuDNNValidTensor(const Tensor& X) const {
const int ndim = X.dim();
return ndim >= 3 && ndim <= CUDNN_DIM_MAX &&
X.numel() < std::numeric_limits<int32_t>::max();
}
void SetTensorDescriptor(
const cudnnDataType_t data_type,
const std::vector<std::int64_t>& X_dims,
const std::vector<std::int64_t>& Y_dims) {
const int ndim = X_dims.size();
std::vector<int> dims(Y_dims.cbegin(), Y_dims.cend());
std::vector<int> X_strides(ndim);
std::vector<int> X_buff(ndim);
std::vector<int> Y_strides(ndim);
X_buff.back() = 1;
Y_strides.back() = 1;
for (int i = ndim - 1; i > 0; --i) {
X_buff[i - 1] = X_buff[i] * X_dims[i];
Y_strides[i - 1] = Y_strides[i] * Y_dims[i];
}
for (int i = 0; i < ndim; ++i) {
X_strides[i] = X_buff[axes_[i]];
}
CUDNN_ENFORCE(cudnnSetTensorNdDescriptor(
X_desc_, data_type, ndim, dims.data(), X_strides.data()));
CUDNN_ENFORCE(cudnnSetTensorNdDescriptor(
Y_desc_, data_type, ndim, dims.data(), Y_strides.data()));
}
CuDNNWrapper cudnn_wrapper_;
cudnnTensorDescriptor_t X_desc_;
cudnnTensorDescriptor_t Y_desc_;
cudnnDataType_t cached_dtype_ = cudnnTypeWrapper<float>::type;
std::vector<std::int64_t> cached_X_dims_;
std::vector<std::int32_t> axes_;
};
#if !CUDNN_VERSION_MIN(6, 0, 0)
// CuDNN 5.1 does not have int support yet.
template <>
bool CuDNNTransposeOp::DoRunWithType<int>() {
const auto& X = Input(0);
const int ndim = X.dim();
if (axes_.empty()) {
axes_.resize(ndim);
std::iota(axes_.rbegin(), axes_.rend(), 0);
} else {
CAFFE_ENFORCE_EQ(axes_.size(), ndim);
}
std::vector<std::int64_t> X_dims = X.sizes().vec();
std::vector<std::int64_t> Y_dims(ndim);
for (int i = 0; i < ndim; ++i) {
Y_dims[i] = X_dims[axes_[i]];
}
auto* Y = Output(0, Y_dims, at::dtype<T>());
const T* X_data = X.template data<T>();
T* Y_data = Y->template mutable_data<T>();
math::Transpose<std::int64_t, T, CUDAContext>(
ndim, X_dims.data(), axes_.data(), X_data, Y_data, &context_);
return true;
}
#endif // !CUDNN_VERSION_MIN(6, 0, 0)
} // namespace
REGISTER_CUDNN_OPERATOR(Transpose, CuDNNTransposeOp);
} // namespace caffe2
|