File: upsample_op.cc

package info (click to toggle)
pytorch 1.13.1%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 139,252 kB
  • sloc: cpp: 1,100,274; python: 706,454; ansic: 83,052; asm: 7,618; java: 3,273; sh: 2,841; javascript: 612; makefile: 323; xml: 269; ruby: 185; yacc: 144; objc: 68; lex: 44
file content (223 lines) | stat: -rw-r--r-- 8,686 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
/**
 * Copyright (c) 2016-present, Facebook, Inc.
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

#include "caffe2/operators/upsample_op.h"

#include "caffe2/utils/cpu_neon.h"
#include "caffe2/utils/math.h"

namespace caffe2 {

template <>
bool UpsampleBilinearOp<float, CPUContext>::RunOnDevice() {
  const auto& X = Input(0);

  if (InputSize() == 2) {
    const auto& scales = Input(1);
    CAFFE_ENFORCE_EQ(scales.dim(), 1);
    CAFFE_ENFORCE_EQ(scales.numel(), 2);
    const float* scales_data = scales.data<float>();
    height_scale_ = scales_data[0];
    width_scale_ = scales_data[1];
  }

  const int batch_size = X.dim32(0);
  const int num_channels = X.dim32(1);
  const int input_height = X.dim32(2);
  const int input_width = X.dim32(3);
  // NOLINTNEXTLINE(bugprone-narrowing-conversions,cppcoreguidelines-narrowing-conversions)
  int output_width = input_width * width_scale_;
  // NOLINTNEXTLINE(bugprone-narrowing-conversions,cppcoreguidelines-narrowing-conversions)
  int output_height = input_height * height_scale_;
  auto* Y = Output(
      0,
      {batch_size, num_channels, output_height, output_width},
      at::dtype<float>());

  const float* input = X.data<float>();
  float* output = Y->mutable_data<float>();
  int channels = num_channels * batch_size;

  const float rheight = (output_height > 1)
      // NOLINTNEXTLINE(bugprone-narrowing-conversions,cppcoreguidelines-narrowing-conversions)
      ? (float)(input_height - 1) / (output_height - 1)
      : 0.f;
  const float rwidth =
      // NOLINTNEXTLINE(bugprone-narrowing-conversions,cppcoreguidelines-narrowing-conversions)
      (output_width > 1) ? (float)(input_width - 1) / (output_width - 1) : 0.f;
  for (int h2 = 0; h2 < output_height; ++h2) {
    // NOLINTNEXTLINE(bugprone-narrowing-conversions,cppcoreguidelines-narrowing-conversions)
    const float h1r = rheight * h2;
    // NOLINTNEXTLINE(bugprone-narrowing-conversions,cppcoreguidelines-narrowing-conversions)
    const int h1 = h1r;
    const int h1p = (h1 < input_height - 1) ? 1 : 0;
    // NOLINTNEXTLINE(bugprone-narrowing-conversions,cppcoreguidelines-narrowing-conversions)
    const float h1lambda = h1r - h1;
    const float h0lambda = (float)1. - h1lambda;
    for (int w2 = 0; w2 < output_width; ++w2) {
      // NOLINTNEXTLINE(bugprone-narrowing-conversions,cppcoreguidelines-narrowing-conversions)
      const float w1r = rwidth * w2;
      // NOLINTNEXTLINE(bugprone-narrowing-conversions,cppcoreguidelines-narrowing-conversions)
      const int w1 = w1r;
      const int w1p = (w1 < input_width - 1) ? 1 : 0;
      // NOLINTNEXTLINE(bugprone-narrowing-conversions,cppcoreguidelines-narrowing-conversions)
      const float w1lambda = w1r - w1;
      const float w0lambda = (float)1. - w1lambda;
      const float* Xdata = &input[h1 * input_width + w1];
      float* Ydata = &output[h2 * output_width + w2];
      for (int c = 0; c < channels; ++c) {
        Ydata[0] = h0lambda * (w0lambda * Xdata[0] + w1lambda * Xdata[w1p]) +
            h1lambda *
                (w0lambda * Xdata[h1p * input_width] +
                 w1lambda * Xdata[h1p * input_width + w1p]);
        Xdata += input_width * input_height;
        Ydata += output_width * output_height;
      }
    }
  }

  return true;
}

template <>
bool UpsampleBilinearGradientOp<float, CPUContext>::RunOnDevice() {
  const auto& dY = Input(0);
  const auto& X = Input(1);

  if (InputSize() == 3) {
    const auto& scales = Input(2);
    CAFFE_ENFORCE_EQ(scales.dim(), 1);
    CAFFE_ENFORCE_EQ(scales.numel(), 2);
    const float* scales_data = scales.data<float>();
    height_scale_ = scales_data[0];
    width_scale_ = scales_data[1];
  }

  const auto inputDims = dY.sizes();
  CAFFE_ENFORCE_EQ(4, inputDims.size());
  const int batch_size = dY.dim32(0);
  const int num_channels = dY.dim32(1);
  const int input_height = dY.dim32(2);
  const int input_width = dY.dim32(3);
  const int output_height = X.dim32(2);
  const int output_width = X.dim32(3);
  auto* dX = Output(
      0,
      {batch_size, num_channels, output_height, output_width},
      at::dtype<float>());
  math::Set<float, CPUContext>(
      dX->numel(), 0.0f, dX->mutable_data<float>(), &context_);

  const float* dYdata = dY.data<float>();
  float* dXdata = dX->mutable_data<float>();
  int channels = num_channels * batch_size;

  const float rheight = (input_height > 1)
      // NOLINTNEXTLINE(bugprone-narrowing-conversions,cppcoreguidelines-narrowing-conversions)
      ? (float)(output_height - 1) / (input_height - 1)
      : 0.f;
  const float rwidth =
      // NOLINTNEXTLINE(bugprone-narrowing-conversions,cppcoreguidelines-narrowing-conversions)
      (input_width > 1) ? (float)(output_width - 1) / (input_width - 1) : 0.f;

  for (int h2 = 0; h2 < input_height; ++h2) {
    // NOLINTNEXTLINE(bugprone-narrowing-conversions,cppcoreguidelines-narrowing-conversions)
    const float h1r = rheight * h2;
    // NOLINTNEXTLINE(bugprone-narrowing-conversions,cppcoreguidelines-narrowing-conversions)
    const int h1 = h1r;
    const int h1p = (h1 < output_height - 1) ? 1 : 0;
    // NOLINTNEXTLINE(bugprone-narrowing-conversions,cppcoreguidelines-narrowing-conversions)
    const float h1lambda = h1r - h1;
    const float h0lambda = (float)1. - h1lambda;
    for (int w2 = 0; w2 < input_width; ++w2) {
      // NOLINTNEXTLINE(bugprone-narrowing-conversions,cppcoreguidelines-narrowing-conversions)
      const float w1r = rwidth * w2;
      // NOLINTNEXTLINE(bugprone-narrowing-conversions,cppcoreguidelines-narrowing-conversions)
      const int w1 = w1r;
      const int w1p = (w1 < output_width - 1) ? 1 : 0;
      // NOLINTNEXTLINE(bugprone-narrowing-conversions,cppcoreguidelines-narrowing-conversions)
      const float w1lambda = w1r - w1;
      const float w0lambda = (float)1. - w1lambda;
      float* pos1 = &dXdata[h1 * output_width + w1];
      const float* pos2 = &dYdata[h2 * input_width + w2];
      for (int c = 0; c < channels; ++c) {
        pos1[0] += h0lambda * w0lambda * pos2[0];
        pos1[w1p] += h0lambda * w1lambda * pos2[0];
        pos1[h1p * output_width] += h1lambda * w0lambda * pos2[0];
        pos1[h1p * output_width + w1p] += h1lambda * w1lambda * pos2[0];
        pos1 += output_width * output_height;
        pos2 += input_width * input_height;
      }
    }
  }

  return true;
}

REGISTER_CPU_OPERATOR(UpsampleBilinear, UpsampleBilinearOp<float, CPUContext>);
REGISTER_CPU_OPERATOR(
    UpsampleBilinearGradient,
    UpsampleBilinearGradientOp<float, CPUContext>);

// Input: X, output: Y
OPERATOR_SCHEMA(UpsampleBilinear)
    .NumInputs(1, 2)
    .NumOutputs(1)
    .Arg("width_scale", "Scale along width dimension")
    .Arg("height_scale", "Scale along height dimension")
    .SetDoc(R"DOC(
Resizes the spatial dimensions of the input using bilinear
interpolation. The `width_scale` and `height_scale` arguments
control the size of the output, which is given by:
output_width = floor(input_width * width_scale)
output_height = floor(output_height * height_scale)
)DOC")
    .Input(0, "X", "Input tensor")
    .Input(
        1,
        "scales",
        "1D, 2-element, Scales tensor, [height_scale, width_scale]")
    .Output(0, "Y", "Output tensor");

// Input: dY, output: dX
OPERATOR_SCHEMA(UpsampleBilinearGradient)
    .NumInputs(2, 3)
    .NumOutputs(1)
    .Arg("width_scale", "Scale along width dimension")
    .Arg("height_scale", "Scale along height dimension");

class GetUpsampleBilinearGradient : public GradientMakerBase {
  using GradientMakerBase::GradientMakerBase;
  vector<OperatorDef> GetGradientDefs() override {
    if (def_.input().size() == 2) {
      // this is a hack to support the second input as dynamic
      // width_scale and height_scale to align with onnx change
      return SingleGradientDef(
          "UpsampleBilinearGradient",
          "",
          vector<string>{GO(0), I(0), I(1)},
          vector<string>{GI(0)});
    }
    return SingleGradientDef(
        "UpsampleBilinearGradient",
        "",
        vector<string>{GO(0), I(0)},
        vector<string>{GI(0)});
  }
};
REGISTER_GRADIENT(UpsampleBilinear, GetUpsampleBilinearGradient);

} // namespace caffe2