1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240
|
// copied and pasted from pytorch to test if this passes the build.
#include "caffe2/core/context_gpu.h"
#include "caffe2/operators/upsample_op.h"
#include "caffe2/utils/GpuAtomics.cuh"
#include "caffe2/utils/math.h"
namespace caffe2 {
namespace {
inline __device__ int idx(
const int n,
const int num_channels,
const int c,
const int height,
const int width,
const int y,
const int x) {
return ((n * num_channels + c) * height + y) * width + x;
}
// input is X, output is Y
__global__ void UpsampleBilinearKernel(
const int num_batch,
const int num_channels,
const int input_height,
const int input_width,
const int output_height,
const int output_width,
const float* __restrict__ X,
float* __restrict__ Y) {
const int size = output_height * output_width;
CUDA_1D_KERNEL_LOOP(index, size) {
int indexTemp = index;
const int out_x = indexTemp % output_width;
indexTemp /= output_width;
const int out_y = indexTemp % output_height;
indexTemp /= output_height;
indexTemp /= num_channels;
const float rheight =
output_height > 1 ? (input_height - 1.f) / (output_height - 1.f) : 0.f;
const float rwidth =
output_width > 1 ? (input_width - 1.f) / (output_width - 1.f) : 0.f;
// Compute Y axis lambdas
const float h1r = rheight * out_y;
const int h1 = (int)h1r;
const int h1p = (h1 < input_height - 1) ? 1 : 0;
const float h1lambda = h1r - h1;
const float h0lambda = 1.f - h1lambda;
// Compute X axis lambdas
const float w1r = rwidth * out_x;
const int w1 = (int)w1r;
const int w1p = (w1 < input_width - 1) ? 1 : 0;
const float w1lambda = w1r - w1;
const float w0lambda = 1.f - w1lambda;
for (int n = 0; n < num_batch; n++){
for (int c = 0; c < num_channels; c++) {
float X0 = X[idx(n, num_channels, c, input_height, input_width, h1, w1)];
float X1 = X[idx(n, num_channels, c, input_height, input_width, h1, w1 + w1p)];
float X2 = X[idx(n, num_channels, c, input_height, input_width, h1 + h1p, w1)];
float X3 = X[idx(n, num_channels, c, input_height, input_width, h1 + h1p, w1 + w1p)];
Y[idx(n, num_channels, c, output_height, output_width, out_y, out_x)] =
h0lambda * (w0lambda * X0 + w1lambda * X1) +
h1lambda * (w0lambda * X2 + w1lambda * X3);
}
}
}
}
// input is dY, output is dX
__global__ void UpsampleBilinearGradientKernel(
const int input_size,
const int num_channels,
const int input_height,
const int input_width,
const int output_height,
const int output_width,
const float* dY,
float* dX) {
CUDA_1D_KERNEL_LOOP(index, input_size) {
int indexTemp = index;
const int in_x = indexTemp % input_width;
indexTemp /= input_width;
const int in_y = indexTemp % input_height;
indexTemp /= input_height;
const int c = indexTemp % num_channels;
indexTemp /= num_channels;
const int n = indexTemp;
const float rheight =
output_height > 1 ? (output_height - 1.f) / (input_height - 1.f) : 0.f;
const float rwidth =
output_width > 1 ? (output_width - 1.f) / (input_width - 1.f) : 0.f;
// Compute Y axis lambdas
const float h1r = rheight * in_y;
const int h1 = (int)h1r;
const int h1p = (h1 < output_height - 1) ? 1 : 0;
const float h1lambda = h1r - h1;
const float h0lambda = 1.f - h1lambda;
// Compute X axis lambdas
const float w1r = rwidth * in_x;
const int w1 = (int)w1r;
const int w1p = (w1 < output_width - 1) ? 1 : 0;
const float w1lambda = w1r - w1;
const float w0lambda = 1.f - w1lambda;
#if __CUDA_ARCH__ >= 350
const float dYi = __ldg(&dY[index]);
#else
const float dYi = dY[index];
#endif
gpu_atomic_add(
&dX[idx(n, num_channels, c, output_height, output_width, h1, w1)],
h0lambda * w0lambda * dYi);
gpu_atomic_add(
&dX[idx(n, num_channels, c, output_height, output_width, h1, w1 + w1p)],
h0lambda * w1lambda * dYi);
gpu_atomic_add(
&dX[idx(n, num_channels, c, output_height, output_width, h1 + h1p, w1)],
h1lambda * w0lambda * dYi);
gpu_atomic_add(
&dX[idx(
n,
num_channels,
c,
output_height,
output_width,
h1 + h1p,
w1 + w1p)],
h1lambda * w1lambda * dYi);
}
}
} // namespace
template <>
bool UpsampleBilinearOp<float, CUDAContext>::RunOnDevice() {
const auto& X = Input(0);
const auto inputDims = X.sizes();
CAFFE_ENFORCE_EQ(4, inputDims.size());
const int batch_size = X.dim32(0), num_channels = X.dim32(1),
input_height = X.dim32(2), input_width = X.dim32(3);
if (InputSize() == 2) {
const auto& scales = Input(1);
CAFFE_ENFORCE_EQ(scales.dim(), 1);
CAFFE_ENFORCE_EQ(scales.numel(), 2);
float scales_data[2];
context_.CopyToCPU<float>(2, scales.data<float>(), scales_data);
height_scale_ = scales_data[0];
width_scale_ = scales_data[1];
}
int output_width = input_width * width_scale_;
int output_height = input_height * height_scale_;
auto* Y = Output(
0,
{batch_size, num_channels, output_height, output_width},
at::dtype<float>());
const auto size = output_height * output_width;
UpsampleBilinearKernel<<<
CAFFE_GET_BLOCKS(size),
CAFFE_CUDA_NUM_THREADS,
0,
context_.cuda_stream()>>>(
batch_size,
num_channels,
input_height,
input_width,
output_height,
output_width,
X.data<float>(),
Y->template mutable_data<float>());
C10_CUDA_KERNEL_LAUNCH_CHECK();
return true;
}
template <>
bool UpsampleBilinearGradientOp<float, CUDAContext>::RunOnDevice() {
const auto& dY = Input(0);
const auto& X = Input(1);
const auto inputDims = dY.sizes();
CAFFE_ENFORCE_EQ(4, inputDims.size());
const int batch_size = dY.dim32(0);
const int num_channels = dY.dim32(1);
const int input_height = dY.dim32(2);
const int input_width = dY.dim32(3);
const int output_height = X.dim32(2);
const int output_width = X.dim32(3);
if (InputSize() == 3) {
const auto& scales = Input(2);
CAFFE_ENFORCE_EQ(scales.dim(), 1);
CAFFE_ENFORCE_EQ(scales.numel(), 2);
float scales_data[2];
context_.CopyToCPU<float>(2, scales.data<float>(), scales_data);
height_scale_ = scales_data[0];
width_scale_ = scales_data[1];
}
auto* dX = Output(
0,
{batch_size, num_channels, output_height, output_width},
at::dtype<float>());
math::Set<float, CUDAContext>(
dX->numel(), 0.0f, dX->mutable_data<float>(), &context_);
const auto size = dY.numel();
UpsampleBilinearGradientKernel<<<
CAFFE_GET_BLOCKS(size),
CAFFE_CUDA_NUM_THREADS,
0,
context_.cuda_stream()>>>(
size,
num_channels,
input_height,
input_width,
output_height,
output_width,
dY.data<float>(),
dX->template mutable_data<float>());
C10_CUDA_KERNEL_LAUNCH_CHECK();
return true;
}
REGISTER_CUDA_OPERATOR(
UpsampleBilinear,
UpsampleBilinearOp<float, CUDAContext>);
REGISTER_CUDA_OPERATOR(
UpsampleBilinearGradient,
UpsampleBilinearGradientOp<float, CUDAContext>);
} // namespace caffe2
|