1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358
|
#include "caffe2/operators/utility_ops.h"
#include <thrust/device_vector.h>
#include <thrust/sequence.h>
#include <thrust/sort.h>
#include <thrust/system/cuda/execution_policy.h>
#include <thrust/unique.h>
#include "caffe2/core/context_gpu.h"
#include "caffe2/operators/flatten_op.h"
#include "caffe2/utils/GpuAtomics.cuh"
#include "caffe2/utils/math.h"
namespace caffe2 {
template <>
bool WeightedSumOp<CUDAContext>::RunOnDevice() {
if (Input(0).IsType<float>()) {
return DoRunWithType<float>();
} else if (Input(0).IsType<at::Half>()) {
return DoRunWithType<at::Half>();
} else {
CAFFE_THROW("Unsupported inputs");
}
return false;
}
template <>
bool SumOp<CUDAContext>::RunOnDevice() {
return DispatchHelper<TensorTypes<float, at::Half, int32_t, int64_t>>::call(
this, Input(0));
}
REGISTER_CUDA_OPERATOR(Print, PrintOp<CUDAContext>);
REGISTER_CUDA_OPERATOR(Flatten, FlattenOp<CUDAContext>);
REGISTER_CUDA_OPERATOR(FlattenToVec, FlattenToVecOp<CUDAContext>);
REGISTER_CUDA_OPERATOR(Alias, AliasOp<CUDAContext>);
REGISTER_CUDA_OPERATOR(ResizeLike, ResizeLikeOp<CUDAContext>);
REGISTER_CUDA_OPERATOR(Sum, SumOp<CUDAContext>);
REGISTER_CUDA_OPERATOR(WeightedSum, WeightedSumOp<CUDAContext>);
REGISTER_CUDA_OPERATOR(EnsureDense, EnsureDenseOp<CUDAContext>);
__global__ void NanCheckKernel(int N, const float* X, bool* result) {
bool has_nan = false;
CUDA_1D_KERNEL_LOOP(i, N) {
// Note: we have no need to do early return, since only if this fails
// will we not need to inspect all elements. No need to optimize the
// case that will fail.
has_nan = has_nan || isnan(X[i]) || isinf(X[i]);
}
__syncthreads();
if (has_nan) {
result[0] = true;
}
}
template <>
bool NanCheckOp<CUDAContext>::RunOnDevice() {
auto& X = Input(0);
auto* Y = Output(0);
const size_t N = X.numel();
const float* data_ptr = X.data<float>();
ReinitializeTensor(&scratch_, {1}, at::dtype<bool>().device(CUDA));
math::Set<bool, CUDAContext>(
1, false, scratch_.mutable_data<bool>(), &context_);
NanCheckKernel<<<
CAFFE_GET_BLOCKS(N),
CAFFE_CUDA_NUM_THREADS,
0,
context_.cuda_stream()>>>(
N, X.data<float>(), scratch_.mutable_data<bool>());
C10_CUDA_KERNEL_LAUNCH_CHECK();
bool result = false;
{
std::lock_guard<std::mutex> lock(CUDAContext::mutex());
CUDA_ENFORCE(cudaMemcpyAsync(
&result,
scratch_.raw_data(),
1,
cudaMemcpyDefault,
context_.cuda_stream()));
}
// Note: we must synchronize here so we can inspect the result
context_.FinishDeviceComputation();
// Print out diagnostic info if we have a NaN or inf
if (result) {
std::cerr << "Tensor contained NaN or inf: " << this->debug_def().input(0)
<< std::endl;
for (int j = 0; j < InputSize(); j++) {
Tensor cpu_X(CPU);
cpu_X.ResizeLike(Input(j));
// Hack to cause allocation happen here, so it won't happen
// when we do CopyFrom. We need the mutex then because host->gpu
// copies seem to possibly lock with NCCL.
cpu_X.mutable_data<float>();
{
std::lock_guard<std::mutex> lock(CUDAContext::mutex());
cpu_X.CopyFrom(Input(j)); // sync copy
}
std::cerr << "Input tensor: " << j << ": [" << this->debug_def().input(j)
<< "]" << std::endl;
tensorPrinter_.Print<float>(cpu_X);
if (j == 0) {
std::cerr << "NaN idxs:" << std::endl;
auto* cpu_X_data = cpu_X.data<float>();
for (size_t i = 0; i < cpu_X.numel(); ++i) {
if (std::isnan(cpu_X_data[i]) || std::isinf(cpu_X_data[i])) {
std::cerr << i << " ";
}
}
}
std::cerr << std::endl;
}
return false;
}
// This op should act as an identity matrix if we don't find any NaNs/infs.
// Copy over the data if we are not doing this in-place.
if (&X != Y) {
Y->CopyFrom(X, true /*async*/);
}
return true;
}
REGISTER_CUDA_OPERATOR(NanCheck, NanCheckOp<CUDAContext>);
/**
* @brief Update slices of Y in-place with a batch of weighted X's.
* Y[idx] = alpha[b] * X[b][i] + Y[idx]
* i=0,...,N-1
* b=0,...,B-1
* idx=Indices[i]
*/
template <typename T_INDEX>
__global__ void AxpySliceKernel(
const float* weight0,
const int64_t N,
const int64_t B,
const int64_t slice_size,
const float** alpha,
const float** X,
const T_INDEX* Indices,
float* Y,
const int64_t M) {
// This implementation requires that the first weight is 1.0
CUDA_KERNEL_ASSERT(weight0[0] == 1.0);
for (int i = blockIdx.x; i < N; i += gridDim.x) {
T_INDEX idx = Indices[i];
float* y_offset = Y + (idx * slice_size);
for (int b = 0; b < B; b++) {
float a = *alpha[b];
const float* x_offset = X[b] + (i * slice_size);
for (int j = threadIdx.x; j < slice_size; j += blockDim.x) {
gpu_atomic_add(&y_offset[j], a * x_offset[j]);
}
}
}
}
// this kernel is a custom version of AxpySliceKernel
// to be used when there is only one weighted X to update
// slice of Y.
template <typename T_INDEX>
__global__ void AxpySliceKernel2(
const float* weight0,
const int64_t N,
const int64_t slice_size,
const float* alpha,
const float* X,
const T_INDEX* Indices,
float* Y,
const int64_t M) {
// This implementation requires that the first weight is 1.0
CUDA_KERNEL_ASSERT(weight0[0] == 1.0);
for (int i = blockIdx.x; i < N; i += gridDim.x) {
T_INDEX idx = Indices[i];
float* y_offset = Y + (idx * slice_size);
for (int j = threadIdx.x; j < slice_size; j += blockDim.x) {
gpu_atomic_add(&y_offset[j], alpha[0] * X[(i * slice_size) + j]);
}
}
}
template <>
bool ScatterWeightedSumOp<CUDAContext>::RunOnDevice() {
const auto& x0 = Input(0);
const auto x0Type = TypeMetaToDataType(x0.dtype());
CAFFE_ENFORCE_EQ(x0Type, TensorProto_DataType_FLOAT, "Only float type is allowed for X0 on GPU.");
return ScatterWeightedSumOp<CUDAContext>::template DoRun<float>();
}
template <>
template <typename T, typename Index>
bool ScatterWeightedSumOp<CUDAContext>::DoRunWithType() {
CAFFE_ENFORCE_EQ(InputSize() % 2, 1);
auto& X0 = Input(0);
auto& weight0 = Input(1);
auto& indices = Input(2);
auto* output = Output(0);
CAFFE_ENFORCE_EQ(&X0, output, "In place operation is required");
CAFFE_ENFORCE_GT(X0.numel(), 0);
CAFFE_ENFORCE_GT(X0.dim(), 0, "X0 has to be at least the vector");
CAFFE_ENFORCE_EQ(weight0.numel(), 1);
int64_t M = X0.numel();
int64_t N = X0.dim(0);
int64_t K = indices.numel();
int64_t block_size = M / N;
float* data = output->template mutable_data<float>();
const int64_t B = (InputSize() - 3) / 2;
if (B > 1) {
// In order to have all device pointers of x_i (and weight_i similarly)
// consecutively in device memory, copy pointers to a host vector and then
// copy back into a device array.
ReinitializeTensor(&x_data_host_, {B}, at::dtype<float*>().device(CPU));
ReinitializeTensor(&weights_host_, {B}, at::dtype<float*>().device(CPU));
ReinitializeTensor(&x_data_device_, {B}, at::dtype<float*>().device(CUDA));
ReinitializeTensor(&weights_device_, {B}, at::dtype<float*>().device(CUDA));
float** x_data_host = x_data_host_.mutable_data<float*>();
float** weights_host = weights_host_.mutable_data<float*>();
float** x_data_device = x_data_device_.mutable_data<float*>();
float** weights_device = weights_device_.mutable_data<float*>();
for (int inp = 3; inp < InputSize(); inp += 2) {
int idx = (inp - 3) / 2;
x_data_host[idx] = static_cast<float*>(Input(inp).raw_data());
weights_host[idx] = static_cast<float*>(Input(inp + 1).raw_data());
}
context_.Copy<float*, CPUContext, CUDAContext>(
B, x_data_host, x_data_device);
context_.Copy<float*, CPUContext, CUDAContext>(
B, weights_host, weights_device);
AxpySliceKernel<<<
std::min<int64_t>(K, CAFFE_MAXIMUM_NUM_BLOCKS),
CAFFE_CUDA_NUM_THREADS,
0,
context_.cuda_stream()>>>(
weight0.template data<float>(),
K,
B,
block_size,
const_cast<const float**>(weights_device),
const_cast<const float**>(x_data_device),
indices.template data<Index>(),
data,
M);
C10_CUDA_KERNEL_LAUNCH_CHECK();
} else {
// when only one input exists to update data buffer,
// avoid copying pointers to device array to prevent
// copy overhead
auto& X1 = Input(3);
auto& weight1 = Input(4);
AxpySliceKernel2<<<
std::min<int64_t>(K, CAFFE_MAXIMUM_NUM_BLOCKS),
CAFFE_CUDA_NUM_THREADS,
0,
context_.cuda_stream()>>>(
weight0.template data<float>(),
K,
block_size,
weight1.template data<float>(),
X1.template data<float>(),
indices.template data<Index>(),
data,
M);
C10_CUDA_KERNEL_LAUNCH_CHECK();
}
return true;
}
REGISTER_CUDA_OPERATOR(
ScatterWeightedSum,
ScatterWeightedSumOp<CUDAContext>);
namespace {
template <typename Index, typename T>
__global__ void scatter_assign_kernel(
T* data,
const Index* idxs,
const T* slicesData,
int64_t N,
int64_t K,
int64_t block_size) {
for (int64_t i = blockIdx.x; i < K; i += gridDim.x) {
Index idx = idxs[i];
CUDA_KERNEL_ASSERT(0 <= idx && idx < N);
const T* src = slicesData + block_size * i;
T* dest = data + block_size * idx;
for (int64_t j = threadIdx.x; j < block_size; j += blockDim.x) {
dest[j] = src[j];
}
}
}
} // namespace
template <>
template <typename Index, typename T>
void ScatterAssignOp<CUDAContext>::DoScatterAssign(
T* data,
const Index* idxs,
const T* slicesData,
int64_t N,
int64_t K,
int64_t block_size) {
scatter_assign_kernel<<<
std::min(K, static_cast<int64_t>(CAFFE_MAXIMUM_NUM_BLOCKS)),
CAFFE_CUDA_NUM_THREADS,
0,
context_.cuda_stream()>>>(data, idxs, slicesData, N, K, block_size);
C10_CUDA_KERNEL_LAUNCH_CHECK();
}
REGISTER_CUDA_OPERATOR(ScatterAssign, ScatterAssignOp<CUDAContext>);
REGISTER_CUDA_OPERATOR(Size, SizeOp<CUDAContext>);
template <typename T>
__global__ void RangeKernel(const int n, T* Y, T offset, T step) {
CUDA_1D_KERNEL_LOOP(index, n) {
Y[index] = index * step + offset;
}
}
template <>
template <typename T>
bool RangeOp<CUDAContext>::DoRunOnDevice(
const T& start,
const T& step,
Tensor* output) {
int N = output->numel();
RangeKernel<<<
CAFFE_GET_BLOCKS(N),
CAFFE_CUDA_NUM_THREADS,
0,
context_.cuda_stream()>>>(
N, output->template mutable_data<T>(), start, step);
C10_CUDA_KERNEL_LAUNCH_CHECK();
return true;
}
REGISTER_CUDA_OPERATOR(Range, RangeOp<CUDAContext>);
} // namespace caffe2
|