1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455
|
#include "caffe2/opt/backend_cutting.h"
#include "caffe2/core/logging.h"
#include "caffe2/opt/converter.h"
#include "nomnigraph/Converters/Dot.h"
#include "nomnigraph/Representations/NeuralNet.h"
#include <algorithm>
#include <fstream>
#include <queue>
namespace caffe2 {
namespace opt {
namespace {
using namespace nom::repr;
using NodeRef = NNGraph::NodeRef;
using EdgeRef = NNGraph::EdgeRef;
struct GroupAnnotation {
GroupAnnotation(int i, int g = -1) : group(g), in_degree(i) {}
int group;
int in_degree;
bool needs_transform{true};
};
std::string ShowNode(NodeRef node) {
if (nn::is<NeuralNetData>(node)) {
const auto* nn_tensor = nn::get<NeuralNetData>(node);
return c10::str("Tensor: ", nn_tensor->getName());
} else if (nn::is<NeuralNetOperator>(node)) {
const auto* nn_op = nn::get<NeuralNetOperator>(node);
const auto& op_def =
dyn_cast<Caffe2Annotation>(nn_op->getAnnotation())->getOperatorDef();
return c10::str("Op: ", op_def.type());
} else {
CAFFE_THROW("Known node");
}
}
struct VisitorContext {
// NOLINTNEXTLINE(modernize-pass-by-value)
VisitorContext(std::function<bool(const caffe2::OperatorDef&)> func)
: predicate(func) {}
std::unordered_map<NodeRef, GroupAnnotation> infos;
std::unordered_set<NodeRef> frontier;
std::vector<NodeRef> current_group;
std::function<bool(const caffe2::OperatorDef&)> predicate;
int group{0};
bool find_supported{true};
};
GroupAnnotation& GetInfo(
std::unordered_map<NodeRef, GroupAnnotation>& infos,
NodeRef node) {
auto it = infos.find(node);
CAFFE_ENFORCE(it != infos.end(), "Node info not found for ", ShowNode(node));
return it->second;
}
const GroupAnnotation& GetInfo(
const std::unordered_map<NodeRef, GroupAnnotation>& infos,
NodeRef node) {
auto it = infos.find(node);
CAFFE_ENFORCE(
it != infos.end(), "Const node info not found for ", ShowNode(node));
return it->second;
}
// Explore the graph in topological order until we hit stopping nodes. This is
// based on Khan's algorithm:
// https://en.wikipedia.org/wiki/Topological_sorting#Kahn's_algorithm
// Precondition: nodes in `current_frontier` must have satisfy `in_degree == 0`
void Explore(
const std::vector<NodeRef>& current_frontier,
VisitorContext* context) {
std::queue<NodeRef> q;
for (const auto n : current_frontier) {
q.push(n);
}
while (!q.empty()) {
auto node = q.front();
q.pop();
auto& info = GetInfo(context->infos, node);
// Check if the node is supported, stop exploring further if not supported
if (nn::is<NeuralNetOperator>(node)) {
const auto* nn_op = nn::get<NeuralNetOperator>(node);
const auto& op_def =
dyn_cast<Caffe2Annotation>(nn_op->getAnnotation())->getOperatorDef();
bool wanted = context->predicate(op_def);
wanted = context->find_supported ? wanted : (!wanted);
if (!wanted) {
context->frontier.emplace(node);
continue;
}
}
// Adding to current group
info.group = context->group;
info.needs_transform = context->find_supported;
context->current_group.push_back(node);
// Continue exploring its fanouts
for (const auto& out_edge : node->getOutEdges()) {
auto child_node = out_edge->head();
auto& child_info = GetInfo(context->infos, child_node);
if (--child_info.in_degree == 0) {
q.push(child_node);
}
}
}
}
// Note: subgraph always starts with ops and ends with tensors, except for the
// very first group, which can be all tensors
struct TransformSubgraph {
explicit TransformSubgraph(
std::vector<NodeRef>&& f,
std::vector<NodeRef>&& n,
int id,
bool need)
: input_nodes(std::move(f)),
nodes(std::move(n)),
group_id(id),
needed(need) {}
TransformSubgraph(TransformSubgraph&& rhs) noexcept
: input_nodes(std::move(rhs.input_nodes)),
nodes(std::move(rhs.nodes)),
external_input_refs(std::move(rhs.external_input_refs)),
external_output_refs(std::move(rhs.external_output_refs)),
group_id(rhs.group_id),
needed(rhs.needed) {}
TransformSubgraph& operator=(TransformSubgraph&& rhs) noexcept {
input_nodes = std::move(rhs.input_nodes);
nodes = std::move(rhs.nodes);
external_input_refs = std::move(rhs.external_input_refs);
external_output_refs = std::move(rhs.external_output_refs);
group_id = rhs.group_id;
needed = rhs.needed;
return *this;
}
void Print() const {
LOG(INFO) << "Group :" << group_id;
LOG(INFO) << " Input Nodes: ";
for (const auto i : input_nodes) {
LOG(INFO) << " " << ShowNode(i);
}
LOG(INFO) << " Nodes: ";
for (const auto i : nodes) {
LOG(INFO) << " " << ShowNode(i);
}
}
std::vector<NodeRef> input_nodes;
std::vector<NodeRef> nodes;
std::unordered_map<std::string, NodeRef> external_input_refs;
std::unordered_map<std::string, NodeRef> external_output_refs;
int group_id{-1};
bool needed{true};
};
caffe2::NetDef ConvertToC2Net(
const TransformSubgraph& sub,
const std::unordered_map<NodeRef, GroupAnnotation>& infos) {
caffe2::NetDef net;
for (auto node : sub.nodes) {
if (nn::is<NeuralNetOperator>(node)) {
const auto* nn_op = nn::get<NeuralNetOperator>(node);
assert(
isa<Caffe2Annotation>(nn_op->getAnnotation()) &&
"Cannot get caffe2 op from NNOp");
const auto& op_def =
dyn_cast<Caffe2Annotation>(nn_op->getAnnotation())->getOperatorDef();
net.add_op()->CopyFrom(op_def);
}
}
for (const auto& kv : sub.external_input_refs) {
net.add_external_input(kv.first);
VLOG(2) << "Adding external input: " << kv.first;
}
for (const auto& kv : sub.external_output_refs) {
net.add_external_output(kv.first);
VLOG(2) << "Adding external output: " << kv.first;
}
return net;
}
void DetectBoundaryReferences(
TransformSubgraph* subgraph,
const std::unordered_map<NodeRef, GroupAnnotation>& infos,
const std::unordered_set<std::string>& original_external_output) {
for (auto node : subgraph->nodes) {
// inputs
for (auto in_edge : node->getInEdges()) {
auto parent_node = in_edge->tail();
const auto& info = GetInfo(infos, parent_node);
if (info.group != subgraph->group_id &&
nn::is<NeuralNetData>(parent_node)) {
const auto* nn_tensor = nn::get<const NeuralNetData>(parent_node);
subgraph->external_input_refs.emplace(
nn_tensor->getName(), parent_node);
}
}
// outputs
if (!nn::is<NeuralNetData>(node)) {
continue;
}
// Note that although matched subgraph won't contain external inputs as we
// skip the initial input tensor of matching, it is possible to contain
// external outputs. We will mark these external outputs as boundary outputs
// too.
auto name = nn::get<const NeuralNetData>(node)->getName();
if (original_external_output.count(name)) {
subgraph->external_output_refs.emplace(name, node);
} else {
for (auto child_node : nn::getConsumers(node)) {
const auto& info = GetInfo(infos, child_node);
if (info.group != subgraph->group_id) {
subgraph->external_output_refs.emplace(name, node);
break;
}
}
}
}
}
void ReplaceSubgraph(
const TransformSubgraph& subgraph,
caffe2::NetDef& net_opt,
NNGraph* g) {
// Delete the old subgraph starting from the input nodes until we hit boundary
// tensors
for (auto node : subgraph.nodes) {
if (nn::is<NeuralNetData>(node) &&
subgraph.external_output_refs.count(
nn::get<const NeuralNetData>(node)->getName())) {
VLOG(2) << "Keeping " << ShowNode(node);
continue;
}
VLOG(2) << "Deleting " << ShowNode(node);
g->deleteNode(node);
}
// Convert new NetDef back to NNGraph
std::unordered_map<std::string, NodeRef> tensor_map;
for (const auto& kv : subgraph.external_input_refs) {
tensor_map.emplace(kv.first, kv.second);
}
for (const auto& kv : subgraph.external_output_refs) {
tensor_map.emplace(kv.first, kv.second);
}
for (auto& op : *net_opt.mutable_op()) {
auto op_node = g->createNode();
for (const auto& input : op.input()) {
if (!tensor_map.count(input)) {
tensor_map[input] =
g->createNode(std::make_unique<nom::repr::Tensor>(input));
}
auto tensor_node = tensor_map[input];
g->createEdge(tensor_node, op_node);
}
for (const auto& output : op.output()) {
if (!tensor_map.count(output)) {
tensor_map[output] =
g->createNode(std::make_unique<nom::repr::Tensor>(output));
}
auto tensor_node = tensor_map[output];
g->createEdge(op_node, tensor_node);
}
op_node->resetData(convertToNeuralNetOperator(op));
}
}
void PruneUnrefereredNodes(NNModule* nn) {
auto& g = nn->dataFlow;
std::vector<NodeRef> to_delete;
for (auto node : g.getMutableNodes()) {
if (!nn::hasProducer(node) && !nn::hasConsumer(node)) {
to_delete.push_back(node);
}
}
for (auto i : to_delete) {
if (nn::is<NeuralNetData>(i)) {
auto name = nn::get<NeuralNetData>(i)->getName();
auto it = nn->inputs.find(i);
if (it != nn->inputs.end()) {
VLOG(2) << "Removing external input " << name;
nn->inputs.erase(it);
}
it = nn->outputs.find(i);
if (it != nn->outputs.end()) {
VLOG(2) << "Removing external output " << name;
nn->outputs.erase(it);
}
}
g.deleteNode(i);
}
}
} // namespace
void DumpGraph(NNGraph* g, const std::string& fname) {
auto nnprinter = [](typename NNGraph::NodeRef node) {
std::map<std::string, std::string> labelMap;
assert(node->data() && "Node doesn't have data, can't render it");
if (isa<NeuralNetOperator>(node->data())) {
auto* op = dyn_cast<NeuralNetOperator>(node->data().get());
const auto& op_def =
dyn_cast<Caffe2Annotation>(op->getAnnotation())->getOperatorDef();
int pos = -1;
for (const auto& arg : op_def.arg()) {
if (arg.name() == "net_pos") {
if (arg.has_i()) {
pos = arg.i();
}
break;
}
}
labelMap["label"] =
op->getName() + " (" + c10::to_string((unsigned long long)node) + ")";
auto* annotation = op->getAnnotation();
if (annotation && isa<Caffe2Annotation>(annotation)) {
auto device_annotation = dyn_cast<Caffe2Annotation>(annotation);
labelMap["label"] += "\\n[" + device_annotation->getDevice() +
", pos=" + c10::to_string(pos) + "]";
auto hash = std::hash<std::string>{}(device_annotation->getDevice());
std::stringstream hex_stream;
hex_stream << std::hex << hash;
labelMap["color"] = "#" + hex_stream.str().substr(0, 6);
labelMap["fontcolor"] = labelMap["color"];
}
labelMap["shape"] = "box";
} else if (isa<Data>(node->data())) {
auto tensor = dyn_cast<NeuralNetData>(node->data().get());
labelMap["label"] = tensor->getName();
labelMap["label"] += "_" + c10::to_string(tensor->getVersion()) + " " +
c10::to_string((unsigned long long)node);
}
return labelMap;
};
std::ofstream out(fname.c_str());
if (out) {
out << nom::converters::convertToDotString(g, nnprinter);
} else {
LOG(ERROR) << "Cannot create nomnigraph dump file: " << fname;
}
}
CutResult OptimizeForBackend(
caffe2::NetDef& net,
std::function<bool(const caffe2::OperatorDef&)> supports,
std::function<caffe2::NetDef(const caffe2::NetDef&)> transform_func,
bool debug) {
auto nn = convertToNNModule(net);
auto& dfg = nn.dataFlow;
// Initialize the group info and figure out the external/input output
VisitorContext context(supports);
std::vector<NodeRef> external_inputs;
std::unordered_set<std::string> external_outputs;
for (auto node : dfg.getMutableNodes()) {
context.infos.emplace(
std::piecewise_construct,
std::forward_as_tuple(node),
std::forward_as_tuple(node->getInEdges().size(), -1));
if (!nn::is<NeuralNetOperator>(node)) {
if (!nn::hasProducer(node)) {
external_inputs.push_back(node);
}
if (!nn::hasConsumer(node)) {
external_outputs.emplace(nn::get<const NeuralNetData>(node)->getName());
}
for (auto i = 0; i < net.external_output_size(); ++i) {
const auto& n = net.external_output(i);
if (n == nn::get<const NeuralNetData>(node)->getName()) {
external_outputs.emplace(n);
}
}
}
}
// Find unsupported and supported groups of nodes alternatively
context.frontier.clear();
context.current_group.clear();
context.find_supported = false;
std::vector<TransformSubgraph> subs;
for (std::vector<NodeRef> frontier(
external_inputs.begin(), external_inputs.end());
!frontier.empty();
context.find_supported = !context.find_supported) {
Explore(frontier, &context);
if (context.find_supported) {
subs.emplace_back(
std::move(frontier),
std::move(context.current_group),
context.group,
context.find_supported);
}
frontier.assign(context.frontier.begin(), context.frontier.end());
context.frontier.clear();
context.current_group.clear();
context.group++;
}
// Transform needed subgraphs one by one
CutResult cutResult;
cutResult.numberOfSubnets = 0;
std::vector<caffe2::NetDef> opt_subnets;
opt_subnets.reserve(subs.size());
for (auto& g : subs) {
// Generate boundary input/output edges
DetectBoundaryReferences(&g, context.infos, external_outputs);
caffe2::NetDef subnet = ConvertToC2Net(g, context.infos);
// Transform the subgraph protobuf def, note that we can have less external
// inputs/outputs but not more
opt_subnets.emplace_back(transform_func(subnet));
if (opt_subnets.back().op_size() > 0 && opt_subnets.back().op(0).type() == "Onnxifi") {
cutResult.numberOfSubnets++;
}
ReplaceSubgraph(g, opt_subnets.back(), &dfg);
}
// Prune dangling nodes, because after transformation, some weights might be
// absorbed
PruneUnrefereredNodes(&nn);
if (debug) {
DumpGraph(&dfg, "dump.dot");
}
auto new_net = convertToCaffe2Proto(nn);
new_net.set_name(net.name() + "_opt");
cutResult.net = std::move(new_net);
return cutResult;
}
} // namespace opt
} // namespace caffe2
|