1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183
|
#include "caffe2/opt/backend_transformer_base.h"
#include "caffe2/onnx/onnx_exporter.h"
#include "caffe2/utils/proto_utils.h"
namespace caffe2 {
// Populate 'net_pos' argument for any ops that don't already have it. 'net_pos'
// we populate here starts after the max 'net_pos' value we encountered.
void BackendTransformerBase::annotateOpIndex(NetDef* net) {
// find the max net_pos that we have so far.
int i = -1;
for (const auto& op : net->op()) {
ArgumentHelper helper(op);
int old_index = helper.GetSingleArgument(op, kNetPos, -1);
i = std::max(i, old_index);
}
// populate net_pos for any op that doesn't already have it.
for (auto& op : *(net->mutable_op())) {
if (!ArgumentHelper::HasArgument(op, kNetPos)) {
AddArgument(kNetPos, ++i, &op);
}
}
}
std::string BackendTransformerBase::getModelId(const NetDef& net) {
static std::atomic<size_t> seq_id{0};
std::string model_id;
for (const auto& arg : net.arg()) {
if (arg.name() == kModelId) {
if (arg.has_s()) {
model_id = arg.s();
} else if (arg.has_i()) {
model_id = c10::to_string(arg.i());
}
break;
}
}
if (model_id.empty()) {
model_id = "unnamed_" + c10::to_string(seq_id++);
}
return model_id;
}
TensorProto wrapShapeInfoIntoTensorProto(
const std::string& name,
const ShapeInfo& shape_info) {
TensorProto t;
t.set_name(name);
t.set_data_type(shape_info.shape.data_type());
for (const auto i : shape_info.shape.dims()) {
t.add_dims(i);
}
for (const auto& dimType : shape_info.getDimType()) {
t.add_int32_data(static_cast<int32_t>(dimType));
}
return t;
}
QTensorProto wrapShapeInfoIntoQTensorProto(
const std::string& name,
const ShapeInfo& shape_info) {
QTensorProto t;
CAFFE_ENFORCE(
shape_info.is_quantized == true,
"Only quantized shapeinfo can be extracted into QTensor!");
t.set_name(name);
t.set_data_type(shape_info.shape.data_type());
t.set_axis(shape_info.q_info.axis);
t.set_is_multiparam(true);
for (const auto i : shape_info.q_info.scale) {
t.add_scales(i);
}
t.set_scale(1.0);
for (const auto i : shape_info.q_info.offset) {
t.add_biases(i);
}
t.set_bias(0.0);
// precision and is_signed is not used in onnxifi workflow, but it is required
// field
t.set_precision(0);
// NOLINTNEXTLINE(modernize-use-bool-literals)
t.set_is_signed(0);
for (const auto i : shape_info.shape.dims()) {
t.add_dims(i);
}
for (const auto& dimType : shape_info.getDimType()) {
t.add_data(static_cast<int32_t>(dimType));
}
return t;
}
ShapeInfoMap BackendTransformerBase::ssaRewriteAndMapNames(
Workspace* ws,
NetDef* pred_net,
const ShapeInfoMap& input_shape_hints) {
input_mapping_ = onnx::SsaRewrite(nullptr, pred_net);
// Annote the ops with net position
annotateOpIndex(pred_net);
// Since we are going to create a mapped workspace, we need to make sure that
// the parent workspace has the mapped blob names. If the blobs don't exist
// (usually such blobs are input tensor names), we exclude them from mapping.
std::vector<std::string> exclude_mapping;
for (const auto& kv : input_mapping_) {
if (!ws->HasBlob(kv.second)) {
exclude_mapping.emplace_back(kv.first);
}
}
for (const auto& i : exclude_mapping) {
input_mapping_.erase(i);
}
ShapeInfoMap shape_hints_mapped;
for (const auto& kv : input_shape_hints) {
shape_hints_mapped.emplace(kv.first, kv.second);
}
return shape_hints_mapped;
}
ShapeInfoMap BackendTransformerBase::inferShapes(
Workspace* ws,
NetDef* pred_net,
const ShapeInfoMap& shape_hints_mapped,
const BoundShapeSpec& spec) {
ShapeInfoMap shape_map;
// Populate shapes from workplace
const std::vector<std::string> ws_blobs = ws->Blobs();
for (const auto& s : ws_blobs) {
auto shape_info = getShapeInfoFromBlob(ws->GetBlob(s));
if (shape_info.dimTypeIsSet()) {
shape_map.emplace(s, shape_info);
}
}
for (const auto& s : shape_hints_mapped) {
shape_map.insert(s);
}
auto eng = BoundShapeInferencerRegistry()->Create("C10", spec);
eng->InferBoundShapeAndType(*pred_net, shape_map, ws);
const auto& out_map = eng->shape_info();
shape_map.clear();
for (const auto& kv : out_map) {
shape_map.emplace(
std::piecewise_construct,
std::forward_as_tuple(kv.first),
std::forward_as_tuple(
kv.second.getDimType(),
kv.second.shape,
kv.second.is_quantized,
kv.second.q_info));
}
return shape_map;
}
void BackendTransformerBase::addShapeToNet(
NetDef& shape_net,
const ShapeInfoMap& shape_hints) const {
auto* shape_arg = shape_net.add_arg();
auto* qshape_arg = shape_net.add_arg();
shape_arg->set_name("shape_info");
qshape_arg->set_name("qshape_info");
for (const auto& kv : shape_hints) {
if (!kv.second.is_quantized) {
auto t = wrapShapeInfoIntoTensorProto(kv.first, kv.second);
shape_arg->mutable_tensors()->Add()->CopyFrom(t);
} else {
auto t = wrapShapeInfoIntoQTensorProto(kv.first, kv.second);
qshape_arg->mutable_qtensors()->Add()->CopyFrom(t);
}
}
}
void BackendTransformerBase::dumpNet(
const NetDef& pred_net,
const ShapeInfoMap& shape_hints,
const std::string& fname) const {
NetDef shape_net(pred_net);
addShapeToNet(shape_net, shape_hints);
WriteProtoToTextFile(shape_net, fname, false);
}
} // namespace caffe2
|