1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172
|
#include "bound_shape_inferencer.h"
#include "caffe2/core/operator_schema.h"
#include "caffe2/core/tensor_impl.h"
#include "caffe2/core/types.h"
#include "caffe2/utils/proto_utils.h"
#include "caffe2/utils/string_utils.h"
#include <c10/util/irange.h>
namespace caffe2 {
namespace {
std::vector<int64_t> ConvertToVec(
const ::google::protobuf::RepeatedField<::google::protobuf::int64>& in) {
std::vector<int64_t> out;
out.reserve(in.size());
for (const auto d : in) {
out.push_back(d);
}
return out;
}
std::vector<TensorBoundShape::DimType> setDimTypeWithFirst(
TensorBoundShape::DimType firstDimType,
uint32_t n) {
std::vector<TensorBoundShape::DimType> dimTypes(
n, TensorBoundShape_DimType_CONSTANT);
if (dimTypes.size() > 0) {
dimTypes[0] = firstDimType;
}
return dimTypes;
}
int64_t SizeFromDim(const TensorShape& shape, int axis) {
int64_t r = 1;
for (int i = axis; i < shape.dims_size(); ++i) {
r *= shape.dims(i);
}
return r;
}
int64_t SizeToDim(const TensorShape& shape, int axis) {
CAFFE_ENFORCE_LE(axis, shape.dims_size());
int64_t r = 1;
for (int i = 0; i < axis; ++i) {
r *= shape.dims(i);
}
return r;
}
// Check precedence between two vector of ensorBoundShape::DimType.
// If return 1: right take precedence over left
// If return -1: left take precedence over right
// If return 0: no precedence between left and right
int takePrecedenceOver(
const std::vector<TensorBoundShape::DimType>& left,
const std::vector<TensorBoundShape::DimType>& right) {
const static std::vector<
std::tuple<TensorBoundShape::DimType, TensorBoundShape::DimType, int>>
precedence = {
std::tuple<TensorBoundShape::DimType, TensorBoundShape::DimType, int>{
TensorBoundShape_DimType_FEATURE_MAX_DEFAULT,
TensorBoundShape_DimType_FEATURE_MAX,
1},
std::tuple<TensorBoundShape::DimType, TensorBoundShape::DimType, int>{
TensorBoundShape_DimType_FEATURE_MAX,
TensorBoundShape_DimType_FEATURE_MAX_DEFAULT,
-1},
std::tuple<TensorBoundShape::DimType, TensorBoundShape::DimType, int>{
TensorBoundShape_DimType_BATCH_OF_FEATURE_MAX_DEFAULT,
TensorBoundShape_DimType_BATCH_OF_FEATURE_MAX,
1},
std::tuple<TensorBoundShape::DimType, TensorBoundShape::DimType, int>{
TensorBoundShape_DimType_BATCH_OF_FEATURE_MAX,
TensorBoundShape_DimType_BATCH_OF_FEATURE_MAX_DEFAULT,
-1}};
// If left is empty and right is not, right take precedence
if (left.size() == 0 || right.size() == 0) {
return right.size() > left.size();
}
for (auto i: c10::irange(right.size())) {
// If right.size > left.size and left[0:i] == right[0:i],
// right take precedence
// NOLINTNEXTLINE(clang-diagnostic-sign-compare)
if (i >= left.size()) {
return 1;
}
auto l = left[i];
auto r = right[i];
if (l == TensorBoundShape_DimType_UNKNOWN &&
r != TensorBoundShape_DimType_UNKNOWN) {
return 1;
}
if (r == TensorBoundShape_DimType_UNKNOWN &&
l != TensorBoundShape_DimType_UNKNOWN) {
return -1;
}
for (auto& t : precedence) {
if (l == std::get<0>(t) && r == std::get<1>(t)) {
return std::get<2>(t);
}
}
if (l != r) {
return 0;
}
}
return 0;
}
} // namespace
void BoundShapeInferencer::EnsureShapeNames(
std::unordered_map<std::string, ShapeInfo>* info) const {
for (auto& kv : *info) {
kv.second.shape.set_name(kv.first);
}
}
void BoundShapeInferencer::Initialize(
const ShapeInfoMap& info,
bool extract_feature_len) {
shape_info_ = info;
extract_feature_len_ = extract_feature_len;
}
void BoundShapeInferencer::InferOps(
const OperatorDef& op,
caffe2::Workspace* /* ws */) {
const static std::unordered_set<std::string> kSlsOps = {
"SparseLengthsSum",
"SparseLengthsSumFused8BitRowwise",
"SparseLengthsWeightedSum",
"SparseLengthsWeightedSumFused8BitRowwise",
"SparseLengthsSumFused4BitRowwise",
"SparseLengthsWeightedSumFused4BitRowwise",
"SparseLengthsSum4BitRowwiseSparse",
"SparseLengthsWeightedSum4BitRowwiseSparse",
"SparseLengthsSum8BitRowwiseSparse",
"SparseLengthsWeightedSum8BitRowwiseSparse"};
if (kSlsOps.count(op.type())) {
InferSparseLengthsSum(op);
} else if (op.type() == "Add" || op.type() == "Mul") {
InferElementwiseOp(op);
} else if (
op.type() == "FC" || op.type() == "FCTransposed" ||
op.type() == "FbFCPacked" || op.type() == "Int8FC") {
InferFC(op);
} else if (op.type() == "Concat") {
InferConcat(op);
} else if (op.type() == "Reshape") {
InferReshape(op);
} else if (op.type() == "LengthsRangeFill") {
InferLengthsRangeFill(op);
} else if (
(caffe2::StartsWith(op.type(), "GivenTensor") &&
caffe2::EndsWith(op.type(), "Fill")) ||
op.type() == "ConstantFill" || op.type() == "Int8GivenTensorFill" ||
op.type() == "Int8GivenIntTensorFill") {
InferGivenTensorFill(op);
} else if (op.type() == "Shape") {
InferShape(op);
} else if (
op.type() == "FloatToFused8BitRowwiseQuantized" ||
op.type() == "HalfFloatToFused8BitRowwiseQuantized" ||
op.type() == "FloatToFused4BitRowwiseQuantized" ||
op.type() == "HalfToFused4BitRowwiseQuantized" ||
op.type() == "FloatToHalf" || op.type() == "FbGemmPack") {
InferQuantizationTransformation(op);
} else if (op.type() == "UnPackRecords") {
InferUnPackRecords(op);
} else if (op.type() == "Tile") {
InferTile(op);
} else if (op.type() == "SparseLengthsSumSparseLookup") {
InferSparseLengthsSumSparseLookup(op);
} else if (op.type() == "Softmax") {
InferSoftmax(op);
} else if (op.type() == "LpNorm") {
InferLpNorm(op);
} else if (op.type() == "Transpose") {
InferTranspose(op);
} else if (op.type() == "Bucketize") {
InferBucketize(op);
} else if (op.type() == "Clip") {
InferClip(op);
} else if (op.type() == "Div") {
InferDiv(op);
} else if (op.type() == "Mean") {
InferMean(op);
} else {
InferCommonOp(op);
}
}
void BoundShapeInferencer::InferBoundShapeAndType(
const NetDef& net,
const ShapeInfoMap& info,
caffe2::Workspace* ws,
bool extract_feature_len) {
const static std::unordered_set<std::string> unsupported{};
Initialize(info, extract_feature_len);
bool inferFinished = false;
auto old_shape_num = shape_info_.size();
while (!inferFinished) {
for (const auto& op : net.op()) {
VLOG(1) << op.type();
if (unsupported.count(op.type())) {
continue;
}
InferOps(op, ws);
}
// Doing a reverse pass to infer the input shapes if applicable
for (int i = net.op_size() - 1; i >= 0; --i) {
const auto& op = net.op(i);
if (op.type() == "Concat") {
InferConcatInputs(op);
} else if (op.type() == "Int8Quantize") {
InferInt8QuantizeInput(op);
} else if (op.type() == "Mul" || op.type() == "Add") {
InferElementwiseOpInput(op);
}
}
inferFinished = old_shape_num == shape_info_.size();
VLOG(1) << "old shape info num: " << old_shape_num
<< ", new shape info num: " << shape_info_.size();
old_shape_num = shape_info_.size();
}
// Make sure shape has name
EnsureShapeNames(&shape_info_);
}
TensorShape& BoundShapeInferencer::SetTensorBoundShapeIfNotExist(
const std::string& name,
const std::vector<TensorBoundShape::DimType>& t,
std::vector<int64_t> bound_dims,
TensorProto::DataType type,
bool is_quantized) {
return CheckAndSetTensorBoundShape(
name, t, bound_dims, type, is_quantized, true);
}
// if allow_existing_shape is true, we use existing shape directly
// and not enforce shape to be equal to bound_dims
// else we enforce them to be equal
TensorShape& BoundShapeInferencer::CheckAndSetTensorBoundShape(
const std::string& name,
const std::vector<TensorBoundShape::DimType>& t,
std::vector<int64_t> bound_dims,
TensorProto::DataType type,
bool is_quantized,
bool allow_existing_shape,
float scale,
int offset,
bool in_place_op) {
auto rt = shape_info_.emplace(name, ShapeInfo());
ShapeInfo& shape_info = rt.first->second;
TensorShape& shape = shape_info.shape;
if (shape_info.getShapeIsFinal()) {
return shape;
}
if (is_quantized) {
shape_info.is_quantized = true;
shape_info.q_info.scale.clear();
shape_info.q_info.scale.push_back(scale);
shape_info.q_info.offset.clear();
shape_info.q_info.offset.push_back(offset);
shape_info.q_info.axis = 1;
}
// If the shape information exists in shape_info_ already and we want to
// compare old/new shapes
if (!rt.second && !in_place_op) {
// Check dim size consistency
CAFFE_ENFORCE_EQ(
shape.dims_size(),
bound_dims.size(),
"Dim size inconsistency found in tensor ",
name);
// Get precedence of previous shape vs new shape
int precedence = 0;
if (!shape_info.dimTypeIsSet()) {
precedence = 1;
} else {
precedence = takePrecedenceOver(shape_info.getDimType(), t);
}
// If precedence == 0: check whether previous shape == new shape
// If precedence == 1, override shape with new value
// If precedence == -1, previous shape takes precedence and
// new value is skipped.
if (precedence == 1) {
shape_info.setDimType(t);
for (auto i: c10::irange(bound_dims.size())) {
shape.set_dims(i, bound_dims[i]);
}
} else if (precedence == 0 && !allow_existing_shape) {
// Enforce previous dims and current dims are the same.
for (int i = 0; i < shape.dims_size(); ++i) {
CAFFE_ENFORCE_EQ(
shape.dims(i),
bound_dims[i],
"Shape inconsistency found in tensor ",
name,
" on dim ",
i,
" (",
shape.dims(i),
" vs ",
bound_dims[i],
")");
}
}
return shape;
}
// If shape information does not exist in shape_info_,
// or shape info is not final,
// set shape info according to inputs.
if (!shape_info.getShapeIsFinal()) {
shape_info.setDimType(t);
shape.mutable_dims()->Clear();
for (const auto d : bound_dims) {
shape.add_dims(d);
}
shape.set_data_type(type);
if (in_place_op) {
shape_info.setShapeIsFinal(true);
}
}
return shape;
}
std::vector<TensorShape> InferOutput(
const OperatorDef& op,
const std::vector<TensorShape>& input_shapes) {
const OpSchema* schema = OpSchemaRegistry::Schema(op.type());
CAFFE_ENFORCE(schema);
return schema->InferTensor(op, input_shapes);
}
void BoundShapeInferencer::InferGivenTensorFill(const OperatorDef& op) {
CAFFE_ENFORCE_EQ(op.output_size(), 1, op.type(), " must have 1 output");
InferCommonOp(op);
auto it = shape_info_.find(op.output(0));
if (it != shape_info_.end()) {
it->second.setDimType(std::vector<TensorBoundShape::DimType>(
it->second.shape.dims_size(), TensorBoundShape_DimType_CONSTANT));
if (op.type() == "ConstantFill" && op.input_size() >= 1) {
auto it_input = shape_info_.find(op.input(0));
if (it_input != shape_info_.end()) {
it->second.setDimType(it_input->second.getDimType());
}
}
}
}
void BoundShapeInferencer::InferLengthsRangeFill(const OperatorDef& op) {
CAFFE_ENFORCE_EQ(op.input_size(), 1, "LengthsRangeFill must have 1 input");
CAFFE_ENFORCE_EQ(op.output_size(), 1, "LengthsRangeFill must have 1 output");
// Both input and ouptut of LengthsRangeFill is int32:
// https://fburl.com/fhwb5666
CheckAndSetTensorBoundShape(
op.input(0),
{TensorBoundShape_DimType_BATCH},
{spec_.max_batch_size},
TensorProto_DataType_INT32,
false);
CheckAndSetTensorBoundShape(
op.output(0),
{TensorBoundShape_DimType_BATCH_OF_FEATURE_MAX_DEFAULT},
{spec_.max_batch_size * spec_.max_seq_size},
TensorProto_DataType_INT32,
false);
current_dim_type_ = TensorBoundShape_DimType_BATCH_OF_FEATURE_MAX_DEFAULT;
}
void BoundShapeInferencer::InferSparseLengthsSumSparseLookup(
const OperatorDef& op) {
CAFFE_ENFORCE_GT(
op.input_size(),
2,
"SparseLengthsSumSparseLookup must have more than 2 input");
CAFFE_ENFORCE_GT(
op.output_size(),
1,
"SparseLengthsSumSparseLookup must have more than 1 output");
if (shape_info_.find(op.input(2)) != shape_info_.end()) {
LOG(WARNING)
<< "Shape of COMPRESSED_INDICES_MAPPING input of SparseLengthsSumSparseLookup "
<< op.input(2) << " needs to be presented";
}
for (int i = 0; i < 2; ++i) {
const auto it = shape_info_.find(op.input(i));
if (it != shape_info_.end()) {
shape_info_[op.output(i)] = it->second;
}
}
// Handle the weights
if (op.input_size() == 4) {
CAFFE_ENFORCE_EQ(op.output_size(), 3);
const auto it = shape_info_.find(op.input(3));
if (it != shape_info_.end()) {
shape_info_[op.output(2)] = it->second;
}
}
}
void BoundShapeInferencer::InferSparseLengthsSum(const OperatorDef& op) {
CAFFE_ENFORCE_GE(
op.input_size(), 3, op.type(), " must have at least 3 inputs");
const auto it = shape_info_.find(op.input(0));
CAFFE_ENFORCE(
it != shape_info_.end(),
"Shape of DATA input of SparseLengthsSum ",
op.input(0),
" needs to be presented");
CAFFE_ENFORCE_EQ(
it->second.shape.dims().size(),
2,
"DATA input ",
op.input(0),
"needs to be 2D");
const int weight =
(op.type() == "SparseLengthsWeightedSum" ||
op.type() == "SparseLengthsWeightedSumFused8BitRowwise" ||
op.type() == "SparseLengthsWeightedSumFused4BitRowwise" ||
op.type() == "SparseLengthsWeightedSum4BitRowwiseSparse" ||
op.type() == "SparseLengthsWeightedSum8BitRowwiseSparse")
? 1
: 0;
const bool is4bit =
(op.type() == "SparseLengthsSumFused4BitRowwise" ||
op.type() == "SparseLengthsWeightedSumFused4BitRowwise" ||
op.type() == "SparseLengthsWeightedSum4BitRowwiseSparse" ||
op.type() == "SparseLengthsSum4BitRowwiseSparse");
if (weight) {
CAFFE_ENFORCE_GE(
op.input_size(),
4,
"SparseLengthsWeightedSum(Sparse) must have 4 or 5 inputs");
SetTensorBoundShapeIfNotExist(
op.input(weight),
{TensorBoundShape_DimType_BATCH_OF_FEATURE_MAX_DEFAULT},
{spec_.max_batch_size * spec_.max_seq_size},
TensorProto_DataType_FLOAT,
false);
}
// Bound inputs
SetTensorBoundShapeIfNotExist(
op.input(1 + weight),
{TensorBoundShape_DimType_BATCH_OF_FEATURE_MAX_DEFAULT},
{spec_.max_batch_size * spec_.max_seq_size},
TensorProto_DataType_INT64,
false);
CheckAndSetTensorBoundShape(
op.input(2 + weight),
{TensorBoundShape_DimType_BATCH},
{spec_.max_batch_size},
TensorProto_DataType_INT32,
false);
// Infer output
CAFFE_ENFORCE_EQ(it->second.shape.dims_size(), 2);
current_dim_type_ = TensorBoundShape_DimType_BATCH;
current_max_batch_size_ = spec_.max_batch_size;
auto output_dim1 = it->second.shape.dims(1);
// If the op is SparseLengthsSumFused8BitRowwise, we need to extract 4 bytes
// for fp32 scale and 4 bytes for fp32 bias (https://fburl.com/t6dp9tsc)
if (op.type() == "SparseLengthsSumFused8BitRowwise" ||
op.type() == "SparseLengthsWeightedSumFused8BitRowwise" ||
op.type() == "SparseLengthsSum8BitRowwiseSparse" ||
op.type() == "SparseLengthsWeightedSum8BitRowwiseSparse") {
output_dim1 -= 8;
}
// If the op is SparseLengthsSumFused4BitRowwise, we need to extract 2 bytes
// for fp16 scale and 2 bytes for fp16 bias. Then we double it because we
// pack 2 entries into 1 uint8 element of the embedding table.
// (https://fburl.com/diffusion/stmsyz74)
else if (is4bit) {
output_dim1 -= 4;
output_dim1 *= 2;
}
CAFFE_ENFORCE_GE(
it->second.getDimType().size(), 2, "input(0): ", op.input(0));
CheckAndSetTensorBoundShape(
op.output(0),
{TensorBoundShape_DimType_BATCH, it->second.getDimType(1)},
{spec_.max_batch_size, output_dim1},
TensorProto_DataType_FLOAT,
false);
}
void BoundShapeInferencer::InferShape(const OperatorDef& op) {
InferCommonOp(op);
// old_shape should be a constant
if (op.output_size() > 0 && shape_info_.count(op.output(0))) {
shape_info_[op.output(0)].setDimType(0, TensorBoundShape_DimType_CONSTANT);
}
}
void BoundShapeInferencer::InferReshape(const OperatorDef& op) {
InferCommonOp(op);
// old_shape should be a constant
if (op.output_size() > 1 && shape_info_.count(op.output(1))) {
shape_info_[op.output(1)].setDimType(0, TensorBoundShape_DimType_CONSTANT);
}
}
void BoundShapeInferencer::InferInt8QuantizeInput(const OperatorDef& op) {
if (op.output_size() == 0 || op.input_size() == 0) {
return;
}
if (shape_info_.find(op.input(0)) != shape_info_.end()) {
return;
}
const auto it = shape_info_.find(op.output(0));
if (it == shape_info_.end()) {
return;
}
auto input_shape_info = it->second;
input_shape_info.is_quantized = false;
input_shape_info.q_info.offset.clear();
input_shape_info.q_info.scale.clear();
input_shape_info.shape.set_data_type(TensorProto_DataType_FLOAT);
shape_info_.emplace(op.input(0), std::move(input_shape_info));
}
void BoundShapeInferencer::InferElementwiseOpInput(const OperatorDef& op) {
if (shape_info_.find(op.input(0)) != shape_info_.end() &&
shape_info_.find(op.input(1)) != shape_info_.end()) {
return;
}
const auto it = shape_info_.find(op.output(0));
if (it == shape_info_.end()) {
return;
}
ArgumentHelper helper(op);
const bool broadcast = helper.GetSingleArgument<bool>("broadcast", false);
if (broadcast) {
auto input_shape_info = it->second;
shape_info_.emplace(op.input(0), input_shape_info);
// From definition of Add/Mul:
// "When broadcasting is specified,
// the second tensor can either be of size 1 (a scalar value),
// or having its shape as a contiguous subset of the first tensors shape."
// shape info of second input is always subset of first input.
// Set bound shape of second input same as first input.
shape_info_.emplace(op.input(1), std::move(input_shape_info));
}
}
void BoundShapeInferencer::InferConcatInputs(const OperatorDef& op) {
ArgumentHelper helper(op);
const auto add_axis = helper.GetSingleArgument<int32_t>("add_axis", 0);
// NOLINTNEXTLINE(bugprone-branch-clone)
if (add_axis) {
return;
} else if (op.output_size() == 0 || !shape_info_.count(op.output(0))) {
return;
}
const auto axis = helper.HasArgument("axis")
? helper.GetSingleArgument<int32_t>("axis", -1)
: GetDimFromOrderString(
helper.GetSingleArgument<string>("order", "NCHW"));
const auto& shape_info = shape_info_.at(op.output(0));
int output_channel = shape_info.shape.dims(axis);
int missing_shape_infos = 0;
int channel_acc = 0;
std::string input_to_infer;
for (const auto& i : op.input()) {
const auto it = shape_info_.find(i);
if (it != shape_info_.end()) {
const auto& current_input_shape = it->second;
if (axis < current_input_shape.shape.dims_size()) {
channel_acc += current_input_shape.shape.dims(axis);
} else {
LOG(INFO) << "Mismatched input dim along axis " << axis
<< ". We cannot infer missing input shape for Concat";
return;
}
} else if (missing_shape_infos) {
LOG(INFO) << "More than one missing shapes, previous one: "
<< input_to_infer;
// We can only infer one missing input shape info
return;
} else {
++missing_shape_infos;
input_to_infer = i;
}
}
if (missing_shape_infos && !input_to_infer.empty()) {
auto input_shape_info = shape_info;
input_shape_info.shape.set_dims(axis, output_channel - channel_acc);
shape_info_.emplace(input_to_infer, std::move(input_shape_info));
// Infer the shape of the second output of Concat
InferCommonOp(op);
if (op.output_size() > 1 && shape_info_.count(op.output(1))) {
shape_info_[op.output(1)].setDimType(
0, TensorBoundShape_DimType_CONSTANT);
}
}
}
void BoundShapeInferencer::InferElementwiseOp(const OperatorDef& op) {
InferCommonOp(op);
if (shape_info_.find(op.output(0)) != shape_info_.end() &&
shape_info_.find(op.input(1)) != shape_info_.end()) {
return;
}
const auto it = shape_info_.find(op.input(0));
if (it == shape_info_.end()) {
return;
}
ArgumentHelper helper(op);
const bool broadcast = helper.GetSingleArgument<bool>("broadcast", false);
if (broadcast) {
auto input_shape_info = it->second;
shape_info_.emplace(op.input(1), input_shape_info);
shape_info_.emplace(op.output(0), std::move(input_shape_info));
}
}
// For concat net, if some inputs are missing and we have add_axis argument,
// it means that all the inputs should be of the same dimension. In this case,
// we can infer the shape of the missing inputs
void BoundShapeInferencer::InferConcat(const OperatorDef& op) {
ArgumentHelper helper(op);
auto add_axis = helper.GetSingleArgument<int32_t>("add_axis", 0);
if (add_axis) {
ShapeInfo* ref_input_shape = nullptr;
std::string ref_name;
std::unordered_set<std::string> missing_shape_inputs;
for (const auto& i : op.input()) {
const auto it = shape_info_.find(i);
if (it != shape_info_.end()) {
const auto& current_input_shape = it->second;
if (ref_input_shape) {
CAFFE_ENFORCE_EQ(
ref_input_shape->shape.dims_size(),
current_input_shape.shape.dims_size(),
ref_name,
" vs ",
i);
for (int j = 0; j < ref_input_shape->shape.dims_size(); ++j) {
CAFFE_ENFORCE_EQ(
ref_input_shape->shape.dims(j),
current_input_shape.shape.dims(j),
"Mismatched size on dim ",
j,
" between ",
ref_name,
" and ",
i,
" (",
ref_input_shape->shape.dims(j),
" vs ",
current_input_shape.shape.dims(j),
")");
}
} else {
ref_input_shape = &it->second;
ref_name = i;
}
} else {
missing_shape_inputs.emplace(i);
}
}
if (ref_input_shape) {
current_dim_type_ = ref_input_shape->getDimType(0);
for (const auto& i : missing_shape_inputs) {
shape_info_.emplace(i, *ref_input_shape);
}
}
}
InferCommonOp(op);
// split_info should be a constant
if (op.output_size() > 1 && shape_info_.count(op.output(1))) {
shape_info_[op.output(1)].setDimType(0, TensorBoundShape_DimType_CONSTANT);
}
}
void BoundShapeInferencer::InferFC(const OperatorDef& op) {
CAFFE_ENFORCE(
op.input_size() == 3 || op.input_size() == 4,
"FC has to have 3 or 4 inputs");
const auto w_it = shape_info_.find(op.input(1));
CAFFE_ENFORCE(
w_it != shape_info_.end(),
"Shape of WEIGHT input of FC ",
op.input(1),
" needs to be presented");
const ShapeInfo& w_shape_info = w_it->second;
const auto b_it = shape_info_.find(op.input(2));
CAFFE_ENFORCE(
b_it != shape_info_.end(),
"Shape of BIAS input of FC ",
op.input(2),
" needs to be presented");
const ShapeInfo& b_shape_info = b_it->second;
bool fp16 = (op.type() == "FbFCPacked");
bool int8_fc = (op.type() == "Int8FC" || op.engine() == "DNNLOWP");
float scale = 1;
int offset = 0;
auto x_it = shape_info_.find(op.input(0));
if (x_it == shape_info_.end()) {
// We don't have a hint at the x input we try to deduce it from weight
// shape
ArgumentHelper helper(op);
auto axis = helper.GetSingleArgument<int32_t>("axis", 1);
auto axis_w = helper.GetSingleArgument<int32_t>("axis_w", 1);
const TensorShape w_shape = w_shape_info.shape;
bool transposed = (op.type() == "FCTransposed") ? true : false;
const int canonical_axis_w =
canonical_axis_index_(axis_w, w_shape.dims().size());
const int64_t K = transposed ? SizeToDim(w_shape, canonical_axis_w)
: SizeFromDim(w_shape, canonical_axis_w);
std::vector<int64_t> dims;
std::vector<TensorBoundShape::DimType> dimTypes;
for (int i = 0; i < axis - 1; ++i) {
dims.push_back(1);
dimTypes.push_back(TensorBoundShape_DimType_CONSTANT);
}
dims.push_back(spec_.max_batch_size);
dimTypes.push_back(TensorBoundShape_DimType_BATCH);
dims.push_back(K);
dimTypes.push_back(TensorBoundShape_DimType_CONSTANT);
current_dim_type_ = TensorBoundShape_DimType_BATCH;
current_max_batch_size_ = spec_.max_batch_size;
// NOLINTNEXTLINE(cppcoreguidelines-init-variables)
TensorProto::DataType w_data_type;
if (fp16) {
w_data_type = TensorProto_DataType_FLOAT;
} else if (int8_fc) {
w_data_type = TensorProto_DataType_UINT8;
} else {
w_data_type = w_shape.data_type();
}
if (int8_fc) {
scale = helper.GetSingleArgument<float>("Y_scale", 1);
offset = helper.GetSingleArgument<int>("Y_zero_point", 0);
}
// Note: for FbFCPacked, weight is fp16 but activations are in fp32
CheckAndSetTensorBoundShape(
op.input(0),
dimTypes,
dims,
w_data_type,
int8_fc ? true : false,
false,
scale,
offset);
} else {
ShapeInfo& x_shape_info = x_it->second;
if (x_shape_info.getDimType(0) == TensorBoundShape_DimType_UNKNOWN) {
CAFFE_ENFORCE_GE(x_shape_info.shape.dims_size(), 1);
x_shape_info.shape.set_dims(0, spec_.max_batch_size);
x_shape_info.setDimType(0, TensorBoundShape_DimType_BATCH);
}
}
// Standard shape inference for outputs
std::vector<TensorShape> input_shapes{
shape_info_[op.input(0)].shape, w_shape_info.shape, b_shape_info.shape};
if (op.input_size() == 4) {
const auto quant_param_it = shape_info_.find(op.input(3));
CAFFE_ENFORCE(
quant_param_it != shape_info_.end(),
"Shape of quant_param input of FC ",
op.input(3),
" needs to be presented");
const ShapeInfo& quant_param_shape_info = quant_param_it->second;
input_shapes.emplace_back(quant_param_shape_info.shape);
}
std::vector<TensorShape> output_shapes = InferOutput(op, input_shapes);
CAFFE_ENFORCE_EQ(output_shapes.size(), 1);
// NOLINTNEXTLINE(cppcoreguidelines-init-variables)
TensorProto::DataType output_data_type;
if (fp16) {
output_data_type = TensorProto_DataType_FLOAT;
} else if (int8_fc) {
output_data_type = TensorProto_DataType_UINT8;
} else {
output_data_type = output_shapes.front().data_type();
}
if (int8_fc) {
ArgumentHelper helper(op);
scale = helper.GetSingleArgument<float>("Y_scale", 1);
offset = helper.GetSingleArgument<int>("Y_zero_point", 0);
}
CheckAndSetTensorBoundShape(
op.output(0),
setDimTypeWithFirst(
TensorBoundShape_DimType_BATCH, output_shapes.front().dims().size()),
ConvertToVec(output_shapes[0].dims()),
output_data_type,
int8_fc ? true : false,
false,
scale,
offset);
}
// Infers shapes for operators which are used to transform non-quantized
// operators (e.g. SparseLengthsSum) into quantized operators (e.g.
// SparseLengthsSumFused8BitRowwise) at model training time. If we're doing
// quantization for CONSTANTS (eg. embedding tables), current_dim_type_ should
// be set to CONSTANT.
void BoundShapeInferencer::InferQuantizationTransformation(
const OperatorDef& op) {
bool all_constant = true;
for (const auto& input : op.input()) {
const auto it = shape_info_.find(input);
if (it == shape_info_.end() ||
it->second.getDimType(0) != TensorBoundShape_DimType_CONSTANT) {
all_constant = false;
break;
}
}
const auto previous_dim_type = current_dim_type_;
if (all_constant) {
current_dim_type_ = TensorBoundShape_DimType_CONSTANT;
}
InferCommonOp(op);
current_dim_type_ = previous_dim_type;
}
void BoundShapeInferencer::InferUnPackRecords(const OperatorDef& op) {
std::vector<TensorShape> input_shapes;
for (const auto& input : op.input()) {
const auto it = shape_info_.find(input);
if (it == shape_info_.end()) {
LOG(WARNING) << "Cannot find shape info for " << input << ". Skipping "
<< op.type();
return;
}
input_shapes.emplace_back(it->second.shape);
}
std::vector<TensorShape> output_shapes;
ArgumentHelper helper(op);
std::vector<std::string> fields =
helper.GetRepeatedArgument<std::string>("fields");
const int num_tensors = fields.size();
if (spec_.max_batch_size == 1 && num_tensors == 1 &&
input_shapes[0].dims_size() != 1) {
// Special case of single tensor input
output_shapes.push_back(input_shapes[0]);
} else {
// Input is packed
TensorShape oshape;
oshape.add_dims(spec_.max_batch_size);
oshape.add_dims(spec_.num_embeddings);
oshape.add_dims(spec_.embedding_length);
// TODO: how to do this more intelligently
oshape.set_data_type(TensorProto::FLOAT);
for (int i = 0; i < num_tensors; i++) {
output_shapes.push_back(oshape);
}
}
for (auto i: c10::irange(output_shapes.size())) {
const auto& shape = output_shapes[i];
CheckAndSetTensorBoundShape(
op.output(i),
setDimTypeWithFirst(current_dim_type_, shape.dims().size()),
ConvertToVec(shape.dims()),
output_shapes[i].data_type(),
false);
}
}
void BoundShapeInferencer::InferTile(const OperatorDef& op) {
if (op.input_size() > 1) {
LOG(WARNING) << "Cannot infer shape for Tile when axis and tils are inputs";
return;
}
const auto it = shape_info_.find(op.input(0));
if (it == shape_info_.end()) {
LOG(WARNING) << "Cannot find shape info for " << op.input(0)
<< ". Skipping " << op.type();
return;
}
ArgumentHelper helper(op);
const std::int32_t tiles = helper.GetSingleArgument<std::int32_t>("tiles", 1);
std::int32_t axis = helper.GetSingleArgument<std::int32_t>("axis", 0);
bool dynamic = helper.GetSingleArgument<bool>("dynamic", false);
auto ndims = it->second.shape.dims_size();
const auto canonical_axis = canonical_axis_index_(axis, ndims);
auto shape = it->second.shape;
shape.set_dims(
canonical_axis,
shape.dims(canonical_axis) * (dynamic ? spec_.max_batch_size : tiles));
CheckAndSetTensorBoundShape(
op.output(0),
setDimTypeWithFirst(TensorBoundShape_DimType_BATCH, ndims),
ConvertToVec(shape.dims()),
it->second.shape.data_type(),
false);
}
void BoundShapeInferencer::InferSoftmax(const OperatorDef& op) {
CAFFE_ENFORCE_EQ(op.input_size(), 1, op.type(), " must have 1 input");
CAFFE_ENFORCE_EQ(op.output_size(), 1, op.type(), " must have 1 output");
auto it = shape_info_.find(op.input(0));
if (it == shape_info_.end()) {
LOG(WARNING) << "Didn't find shape info for the input of Softmax, skipping";
return;
}
CheckAndSetTensorBoundShape(
op.output(0),
setDimTypeWithFirst(it->second.getDimType(0), it->second.shape.dims_size()),
ConvertToVec(it->second.shape.dims()),
it->second.shape.data_type(),
false);
}
void BoundShapeInferencer::InferBucketize(const OperatorDef& op) {
CAFFE_ENFORCE_EQ(op.input_size(), 1, op.type(), " must have 1 input");
CAFFE_ENFORCE_EQ(op.output_size(), 1, op.type(), " must have 1 output");
auto it = shape_info_.find(op.input(0));
if (it == shape_info_.end()) {
LOG(WARNING) << "Didn't find shape info for the input of Bucketize, skipping";
return;
}
InferCommonOp(op);
auto it_output = shape_info_.find(op.output(0));
if (it_output != shape_info_.end()) {
it_output->second.setDimType(it->second.getDimType());
}
}
void BoundShapeInferencer::InferLpNorm(const OperatorDef& op) {
CAFFE_ENFORCE_EQ(op.output_size(), 1, op.type(), " must have 1 output");
InferCommonOp(op);
auto it = shape_info_.find(op.output(0));
if (it != shape_info_.end()) {
it->second.setDimType(std::vector<TensorBoundShape::DimType>(
it->second.shape.dims_size(), TensorBoundShape_DimType_CONSTANT));
}
}
void BoundShapeInferencer::InferClip(const OperatorDef& op) {
CAFFE_ENFORCE_EQ(op.output_size(), 1, op.type(), " must have 1 output");
InferCommonOp(op);
auto it = shape_info_.find(op.output(0));
if (it != shape_info_.end()) {
auto it_input = shape_info_.find(op.input(0));
if (it_input != shape_info_.end()) {
it->second.setDimType(it_input->second.getDimType());
}
}
}
void BoundShapeInferencer::InferMean(const OperatorDef& op) {
CAFFE_ENFORCE_EQ(op.output_size(), 1, op.type(), " must have at 1 output");
InferCommonOp(op);
auto it = shape_info_.find(op.output(0));
if (it != shape_info_.end()) {
auto it_input = shape_info_.find(op.input(0));
if (it_input != shape_info_.end()) {
it->second.setDimType(it_input->second.getDimType());
}
}
}
void BoundShapeInferencer::InferDiv(const OperatorDef& op) {
CAFFE_ENFORCE_EQ(op.output_size(), 1, op.type(), " must have 1 output");
InferCommonOp(op);
auto it = shape_info_.find(op.output(0));
if (it != shape_info_.end()) {
auto it_input = shape_info_.find(op.input(0));
if (it_input != shape_info_.end()) {
it->second.setDimType(it_input->second.getDimType());
}
}
}
void BoundShapeInferencer::InferTranspose(const OperatorDef& op) {
CAFFE_ENFORCE_EQ(op.input_size(), 1, op.type(), " must have 1 input");
CAFFE_ENFORCE_EQ(op.output_size(), 1, op.type(), " must have 1 output");
auto it = shape_info_.find(op.input(0));
if (it == shape_info_.end()) {
LOG(WARNING) << "Didn't find shape info for the input of Transpose";
return;
}
ArgumentHelper helper(op);
std::vector<int> axes = helper.GetRepeatedArgument<int>("axes");
if (axes.empty()) {
// In this case it should be existing dims in reverse order
for (int i = it->second.shape.dims().size() - 1; i >= 0; --i) {
axes.push_back(i);
}
} else {
CAFFE_ENFORCE_EQ(
axes.size(),
it->second.shape.dims().size(),
op.type(),
" must specify all axes in Transpose."
);
auto valid_axes =
std::all_of(axes.begin(), axes.end(), [numDims = it->second.shape.dims().size()](int& axis) {
return axis >= 0 && axis < numDims;
});
CAFFE_ENFORCE(valid_axes, "Invalid axes were provided.");
}
std::vector<TensorBoundShape::DimType> dimTypes;
std::vector<int64_t> dims;
for (auto axis : axes) {
dimTypes.push_back(it->second.getDimType(axis));
dims.push_back(it->second.shape.dims()[axis]);
}
CheckAndSetTensorBoundShape(
op.output(0),
dimTypes,
dims,
it->second.shape.data_type(),
false);
}
void BoundShapeInferencer::InferCommonOp(
const OperatorDef& op,
const OpSchema* schema,
bool bypass_input_check,
bool in_place_op) {
// First, we need to check that all the input shape/types are already
// presented
try {
const static std::unordered_set<std::string>
types_with_independent_output_shape = {
"Int8GenQuantParams",
"Int8QuantSchemeBlobFill",
"ComputeEqualizationScale",
"Int8GenQuantParamsMinMax"};
std::vector<TensorShape> input_shapes;
for (const auto& input : op.input()) {
const auto it = shape_info_.find(input);
if (it == shape_info_.end() &&
!types_with_independent_output_shape.count(op.type()) &&
!bypass_input_check) {
LOG(WARNING) << "Cannot find shape info for " << input << ". Skipping "
<< op.type();
return;
}
if (types_with_independent_output_shape.count(op.type()) ||
(bypass_input_check && it == shape_info_.end())) {
TensorShape input_shape;
input_shapes.emplace_back(std::move(input_shape));
} else {
input_shapes.emplace_back(it->second.shape);
}
}
// Schema can be pre-defined.
// If not predefined, get the schema for the op.
if (schema == nullptr) {
schema = OpSchemaRegistry::Schema(op.type());
}
CAFFE_ENFORCE(schema);
std::vector<TensorShape> output_shapes;
output_shapes = schema->InferTensor(op, input_shapes);
bool is_quantized = !(op.type().compare(0, 4, "Int8")) &&
(op.type() != "Int8Dequantize") &&
(op.type() != "Int8QuantSchemeBlobFill") &&
(op.type() != "ComputeEqualizationScale") &&
(op.type() != "Int8GenQuantParams") &&
(op.type() != "Int8GenQuantParamsMinMax");
float scale = 1;
int offset = 0;
TensorProto::DataType infered_data_type = TensorProto::UNDEFINED;
if (is_quantized) {
const static std::map<std::string, int> type_info_from_input = {
{"Int8Quantize", -1}, // Force this op's output to be uint8
{"Int8FCPackWeight", 0},
{"Int8ConvPackWeight", 0},
{"Int8ConvRelu", 1},
{"Int8MaxPool", 0},
{"Int8AveragePool", 0},
{"Int8FC", 1},
{"Int8Conv", 1},
{"Int8SumRelu", 0},
{"Int8Relu", 0}};
CAFFE_ENFORCE(
type_info_from_input.find(op.type()) != type_info_from_input.end(),
"Undefined quantized output data type, add it into type_info_from_input");
int target = type_info_from_input.find(op.type())->second;
if (target == -1) {
infered_data_type = TensorProto::UINT8;
} else {
// NOLINTNEXTLINE(clang-diagnostic-sign-compare)
CAFFE_ENFORCE(target < input_shapes.size());
infered_data_type = input_shapes[target].data_type();
}
// Extract output scale and offset
ArgumentHelper helper(op);
scale = helper.GetSingleArgument<float>("Y_scale", 1);
offset = helper.GetSingleArgument<int>("Y_zero_point", 0);
} else if (op.type() == "Int8Dequantize") {
infered_data_type = TensorProto::FLOAT;
}
for (auto i: c10::irange(output_shapes.size())) {
const auto& shape = output_shapes[i];
if (shape.unknown_shape()) {
continue;
}
auto tmp_dtype = infered_data_type;
if (infered_data_type == TensorProto::UNDEFINED) {
infered_data_type = shape.data_type();
}
CheckAndSetTensorBoundShape(
op.output(i),
setDimTypeWithFirst(current_dim_type_, shape.dims().size()),
ConvertToVec(shape.dims()),
infered_data_type,
is_quantized,
false,
scale,
offset,
in_place_op);
infered_data_type = tmp_dtype;
}
} catch (const caffe2::EnforceNotMet& e) {
LOG(ERROR) << "Enforce not met while inferring shapes for " << op.type()
<< ": " << e.what() << " first output: " << op.output(0);
} catch (const std::exception& e) {
LOG(WARNING) << "Caught exception while inferring shapes for " << op.type()
<< ": " << e.what() << " first output: " << op.output(0);
}
}
std::shared_ptr<BoundShapeInferencerBase> getBoundShapeInferencer(
const BoundShapeSpec& spec) {
return std::make_shared<BoundShapeInferencer>(spec);
}
C10_DEFINE_SHARED_REGISTRY(
BoundShapeInferencerRegistry,
BoundShapeInferencerBase,
const BoundShapeSpec&);
C10_REGISTER_CREATOR(
BoundShapeInferencerRegistry,
C10,
getBoundShapeInferencer);
} // namespace caffe2
|