1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176
|
#pragma once
#include <immintrin.h>
#include "caffe2/core/context.h"
#include "caffe2/core/operator.h"
#include "caffe2/core/types.h"
#include "caffe2/utils/math.h"
namespace caffe2 {
template <class Context>
class ConcatAddMulReplaceNaNClipOp final : public Operator<Context> {
public:
USE_OPERATOR_CONTEXT_FUNCTIONS;
ConcatAddMulReplaceNaNClipOp(const OperatorDef& operator_def, Workspace* ws)
: Operator<Context>(operator_def, ws) {
if (HasArgument("clip_min")) {
min_ = static_cast<float>(this->template GetSingleArgument<float>(
"clip_min", std::numeric_limits<float>::lowest()));
}
if (HasArgument("clip_max")) {
max_ = static_cast<float>(this->template GetSingleArgument<float>(
"clip_max", std::numeric_limits<float>::max()));
}
}
bool RunOnDevice() {
auto concat_input_start = 2;
auto axis_ = 1;
Tensor* split = Output(
1,
vector<int64_t>(1, InputSize() - concat_input_start),
at::dtype<int>());
int* axis_data = split->template mutable_data<int>();
auto& add_input = Input(0);
auto& mul_input = Input(1);
auto& concat_input_0 = Input(2);
int adj_size = concat_input_0.dim();
int canonical_axis = canonical_axis_index_(axis_, adj_size);
CAFFE_ENFORCE_LT(canonical_axis, adj_size, "Axis not in input ndim range.");
for (int i = concat_input_start + 1; i < InputSize(); ++i) {
CAFFE_ENFORCE(
Input(i).dtype() == concat_input_0.dtype(),
"All inputs must have the same type, expected: ",
concat_input_0.dtype().name(),
" but got: ",
Input(i).dtype().name(),
" for input: ",
i);
}
int before = 1, after = 1;
vector<int64_t> output_dims(concat_input_0.sizes().vec());
for (const auto i : c10::irange(concat_input_0.dim())) {
if (i == canonical_axis) {
continue;
}
int dim = concat_input_0.dim32(i);
if (i < canonical_axis) {
before *= dim;
} else { // i > canonical_axis
after *= dim;
}
// check the input dims are compatible.
for (const auto j : c10::irange(concat_input_start, InputSize())) {
int dim_j = Input(j).dim32(i);
CAFFE_ENFORCE(
dim == dim_j,
"Expect dimension = ",
dim,
" got ",
dim_j,
" at axis = ",
i,
" for input: ",
j,
". The input tensors can only have different dimensions "
"when arg 'add_axis' = 0 and along the axis = ",
canonical_axis,
" <",
Input(0).sizes(),
"> vs <",
Input(j).sizes(),
">.");
}
}
CAFFE_ENFORCE(
concat_input_0.dim() <= 2,
"Cannot handle fused concat with dim > 2, please update your fusion logic");
int output_channels = 0;
for (const auto i : c10::irange(concat_input_start, InputSize())) {
axis_data[i - concat_input_start] = Input(i).dim32(canonical_axis);
output_channels += Input(i).dim32(canonical_axis);
}
output_dims[canonical_axis] = output_channels;
auto* output = Output(0, output_dims, at::dtype<float>());
size_t output_offset = 0;
for (const auto i : c10::irange(concat_input_start, InputSize())) {
auto& input = Input(i);
auto axis_dim = input.dim32(canonical_axis);
math::CopyMatrix<Context>(
input.itemsize(),
before,
axis_dim * after,
input.raw_data(),
axis_dim * after,
static_cast<char*>(output->raw_mutable_data(concat_input_0.dtype())) +
output_offset,
output_channels * after,
&context_,
concat_input_0.dtype().copy());
output_offset += axis_dim * after * input.itemsize();
}
float* output_data = output->template mutable_data<float>();
const float* add_input_data = add_input.template data<float>();
const float* mul_input_data = mul_input.template data<float>();
const auto _max_mask = _mm256_set1_ps(max_);
const auto _min_mask = _mm256_set1_ps(min_);
const auto _zeros = _mm256_set1_ps(0.f);
output_offset = 0;
for (const auto outer : c10::irange(before)) {
auto axis_dim = output->dim32(canonical_axis);
size_t inner_size = axis_dim * after;
auto inner = 0;
for (; inner < inner_size; inner += 8) {
if (inner + 7 >= inner_size) {
break;
}
auto elem = _mm256_loadu_ps(&(output_data[output_offset + inner]));
auto add_elem = _mm256_loadu_ps(&(add_input_data[inner]));
auto mul_elem = _mm256_loadu_ps(&(mul_input_data[inner]));
auto added = _mm256_add_ps(elem, add_elem);
auto mulled = _mm256_mul_ps(added, mul_elem);
// ordered non-signaling compare returns false on NaN
auto mask = _mm256_cmp_ps(mulled, mulled, _CMP_EQ_OQ);
auto removed_nan = _mm256_blendv_ps(_zeros, mulled, mask);
auto out_val =
_mm256_max_ps(_mm256_min_ps(_max_mask, removed_nan), _min_mask);
_mm256_storeu_ps(&output_data[output_offset + inner], out_val);
}
for (const auto inner_omp : c10::irange(inner, inner_size)) {
float elem = output_data[output_offset + inner_omp];
float add_elem = add_input_data[inner_omp];
float mul_elem = mul_input_data[inner_omp];
float clipped = (elem + add_elem) * mul_elem;
if (std::isnan(clipped)) {
clipped = 0;
}
if (clipped > max_) {
clipped = max_;
} else if (clipped < min_) {
clipped = min_;
}
output->template mutable_data<float>()[output_offset + inner_omp] = clipped;
}
output_offset += axis_dim * after;
}
return true;
}
protected:
float min_;
float max_;
};
} // namespace caffe2
|