File: cc_amrc.h

package info (click to toggle)
pytorch 1.13.1%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 139,252 kB
  • sloc: cpp: 1,100,274; python: 706,454; ansic: 83,052; asm: 7,618; java: 3,273; sh: 2,841; javascript: 612; makefile: 323; xml: 269; ruby: 185; yacc: 144; objc: 68; lex: 44
file content (176 lines) | stat: -rw-r--r-- 5,926 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
#pragma once

#include <immintrin.h>
#include "caffe2/core/context.h"
#include "caffe2/core/operator.h"
#include "caffe2/core/types.h"
#include "caffe2/utils/math.h"

namespace caffe2 {

template <class Context>
class ConcatAddMulReplaceNaNClipOp final : public Operator<Context> {
 public:
  USE_OPERATOR_CONTEXT_FUNCTIONS;
  ConcatAddMulReplaceNaNClipOp(const OperatorDef& operator_def, Workspace* ws)
      : Operator<Context>(operator_def, ws) {
    if (HasArgument("clip_min")) {
      min_ = static_cast<float>(this->template GetSingleArgument<float>(
          "clip_min", std::numeric_limits<float>::lowest()));
    }
    if (HasArgument("clip_max")) {
      max_ = static_cast<float>(this->template GetSingleArgument<float>(
          "clip_max", std::numeric_limits<float>::max()));
    }
  }

  bool RunOnDevice() {
    auto concat_input_start = 2;
    auto axis_ = 1;

    Tensor* split = Output(
        1,
        vector<int64_t>(1, InputSize() - concat_input_start),
        at::dtype<int>());
    int* axis_data = split->template mutable_data<int>();

    auto& add_input = Input(0);
    auto& mul_input = Input(1);

    auto& concat_input_0 = Input(2);

    int adj_size = concat_input_0.dim();
    int canonical_axis = canonical_axis_index_(axis_, adj_size);
    CAFFE_ENFORCE_LT(canonical_axis, adj_size, "Axis not in input ndim range.");
    for (int i = concat_input_start + 1; i < InputSize(); ++i) {
      CAFFE_ENFORCE(
          Input(i).dtype() == concat_input_0.dtype(),
          "All inputs must have the same type, expected: ",
          concat_input_0.dtype().name(),
          " but got: ",
          Input(i).dtype().name(),
          " for input: ",
          i);
    }
    int before = 1, after = 1;
    vector<int64_t> output_dims(concat_input_0.sizes().vec());
    for (const auto i : c10::irange(concat_input_0.dim())) {
      if (i == canonical_axis) {
        continue;
      }
      int dim = concat_input_0.dim32(i);
      if (i < canonical_axis) {
        before *= dim;
      } else { // i > canonical_axis
        after *= dim;
      }
      // check the input dims are compatible.
      for (const auto j : c10::irange(concat_input_start, InputSize())) {
        int dim_j = Input(j).dim32(i);
        CAFFE_ENFORCE(
            dim == dim_j,
            "Expect dimension = ",
            dim,
            " got ",
            dim_j,
            " at axis = ",
            i,
            " for input: ",
            j,
            ". The input tensors can only have different dimensions "
            "when arg 'add_axis' = 0 and along the axis = ",
            canonical_axis,
            " <",
            Input(0).sizes(),
            "> vs <",
            Input(j).sizes(),
            ">.");
      }
    }

    CAFFE_ENFORCE(
        concat_input_0.dim() <= 2,
        "Cannot handle fused concat with dim > 2, please update your fusion logic");

    int output_channels = 0;
    for (const auto i : c10::irange(concat_input_start, InputSize())) {
      axis_data[i - concat_input_start] = Input(i).dim32(canonical_axis);
      output_channels += Input(i).dim32(canonical_axis);
    }
    output_dims[canonical_axis] = output_channels;
    auto* output = Output(0, output_dims, at::dtype<float>());

    size_t output_offset = 0;
    for (const auto i : c10::irange(concat_input_start, InputSize())) {
      auto& input = Input(i);
      auto axis_dim = input.dim32(canonical_axis);
      math::CopyMatrix<Context>(
          input.itemsize(),
          before,
          axis_dim * after,
          input.raw_data(),
          axis_dim * after,
          static_cast<char*>(output->raw_mutable_data(concat_input_0.dtype())) +
              output_offset,
          output_channels * after,
          &context_,
          concat_input_0.dtype().copy());
      output_offset += axis_dim * after * input.itemsize();
    }

    float* output_data = output->template mutable_data<float>();
    const float* add_input_data = add_input.template data<float>();
    const float* mul_input_data = mul_input.template data<float>();

    const auto _max_mask = _mm256_set1_ps(max_);
    const auto _min_mask = _mm256_set1_ps(min_);
    const auto _zeros = _mm256_set1_ps(0.f);

    output_offset = 0;
    for (const auto outer : c10::irange(before)) {
      auto axis_dim = output->dim32(canonical_axis);
      size_t inner_size = axis_dim * after;
      auto inner = 0;
      for (; inner < inner_size; inner += 8) {
        if (inner + 7 >= inner_size) {
          break;
        }
        auto elem = _mm256_loadu_ps(&(output_data[output_offset + inner]));
        auto add_elem = _mm256_loadu_ps(&(add_input_data[inner]));
        auto mul_elem = _mm256_loadu_ps(&(mul_input_data[inner]));
        auto added = _mm256_add_ps(elem, add_elem);
        auto mulled = _mm256_mul_ps(added, mul_elem);
        // ordered non-signaling compare returns false on NaN
        auto mask = _mm256_cmp_ps(mulled, mulled, _CMP_EQ_OQ);
        auto removed_nan = _mm256_blendv_ps(_zeros, mulled, mask);
        auto out_val =
            _mm256_max_ps(_mm256_min_ps(_max_mask, removed_nan), _min_mask);
        _mm256_storeu_ps(&output_data[output_offset + inner], out_val);
      }

      for (const auto inner_omp : c10::irange(inner, inner_size)) {
        float elem = output_data[output_offset + inner_omp];
        float add_elem = add_input_data[inner_omp];
        float mul_elem = mul_input_data[inner_omp];
        float clipped = (elem + add_elem) * mul_elem;
        if (std::isnan(clipped)) {
          clipped = 0;
        }
        if (clipped > max_) {
          clipped = max_;
        } else if (clipped < min_) {
          clipped = min_;
        }
        output->template mutable_data<float>()[output_offset + inner_omp] = clipped;
      }
      output_offset += axis_dim * after;
    }
    return true;
  }

 protected:
  float min_;
  float max_;
};

} // namespace caffe2