File: concat_elim.cc

package info (click to toggle)
pytorch 1.13.1%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 139,252 kB
  • sloc: cpp: 1,100,274; python: 706,454; ansic: 83,052; asm: 7,618; java: 3,273; sh: 2,841; javascript: 612; makefile: 323; xml: 269; ruby: 185; yacc: 144; objc: 68; lex: 44
file content (203 lines) | stat: -rw-r--r-- 7,559 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
#include "caffe2/opt/custom/concat_elim.h"
#include "caffe2/core/logging.h"
#include "caffe2/opt/nql/graphmatcher.h"
#include "caffe2/opt/passes.h"
#include "nomnigraph/Representations/NeuralNet.h"
#include "nomnigraph/Support/Common.h"
#include "nomnigraph/Transformations/SubgraphMatcher.h"

namespace caffe2 {
namespace opt {

void concatElim(NNModule* nn) {
  using namespace nom::matcher;
  using namespace nom::repr::nn;
  using namespace nom::repr;

  auto mg = NNMatchGraph();

  auto matchConcatInputs =
      mg.createNode(std::move(matchExternalTensorNode().starCount()));
  auto matchConcat = mg.createNode([](NNGraph::NodeRef nodeRef) {
    NOM_REQUIRE_OR_RET_FALSE(nn::is<Concat>(nodeRef));
    NOM_REQUIRE_OR_RET_FALSE(nn::hasUniqueConsumer(nodeRef));
    auto node = nn::get<Concat>(nodeRef);
    return node->getAxis() == 1 && node->getAddAxis();
  });
  mg.createEdge(matchConcatInputs, matchConcat);

  auto matchConcatOutput = mg.createNode(nn::is<nom::repr::Tensor>);
  mg.createEdge(matchConcat, matchConcatOutput);

  auto matchBatchMatmul = mg.createNode([](NNGraph::NodeRef nodeRef) {
    NOM_REQUIRE_OR_RET_FALSE(nn::is<BatchMatMul>(nodeRef));
    NOM_REQUIRE_OR_RET_FALSE(nn::hasSingleOutputAndConsumer(nodeRef));
    auto node = nn::get<BatchMatMul>(nodeRef);
    return node->getTransA() == 0 && node->getTransB() == 1 &&
        node->getBroadcast() == 0;
  });

  mg.createEdge(matchConcatOutput, matchBatchMatmul);
  mg.createEdge(matchConcatOutput, matchBatchMatmul);

  auto matchBmmOutput = mg.createNode(nn::is<nom::repr::Tensor>);
  mg.createEdge(matchBatchMatmul, matchBmmOutput);

  auto matchFlatten = mg.createNode([](NNGraph::NodeRef nodeRef) {
    NOM_REQUIRE_OR_RET_FALSE(nn::is<Flatten>(nodeRef));
    return nn::hasSingleOutputAndConsumer(nodeRef);
  });
  mg.createEdge(matchBmmOutput, matchFlatten);

  auto matchFlattenOutput = mg.createNode(nn::is<nom::repr::Tensor>);
  mg.createEdge(matchFlatten, matchFlattenOutput);

  auto matchIndices = mg.createNode(matchExternalTensorNode());
  auto matchBatchGather = mg.createNode(nn::is<BatchGather>);
  mg.createEdge(matchFlattenOutput, matchBatchGather);
  mg.createEdge(matchIndices, matchBatchGather);

  mg.replaceSubgraph(
      nn->dataFlow,
      matchBatchGather,
      [matchConcatOutput](
          NNGraph& g,
          NNGraph::NodeRef batchGatherNode,
          const NNMatchGraph::SubgraphMatchResultType& matchResult) {
        auto fusedNode =
            g.createNode(make_unique<ConcatBatchMatMulBatchGatherOp>());

        auto batchGatherNodeOutputs = nn::getOutputs(batchGatherNode);
        for (const auto& output : batchGatherNodeOutputs) {
          auto tensor = nn::get<nom::repr::Tensor>(output);
          // Handle cases where blob names are reused - D9113128.
          auto newOutput = g.createNode(
              make_unique<nom::repr::Tensor>(tensor->getName() + "_cc_bmm_bg"));
          g.createEdge(fusedNode, newOutput);
          g.replaceOutEdges(output, newOutput);
        }

        auto concatNode =
            getProducer(matchResult.getMatchNodeMap()->at(matchConcatOutput));
        g.replaceInEdges(batchGatherNode, fusedNode);
        g.replaceInEdges(concatNode, fusedNode);
        g.deleteNodes(matchResult.getMatchedSubgraph()->getNodes());
        return true;
      });
}

REGISTER_OPT_PASS_FROM_FUNC(ConcatElim, concatElim);

void concatAddMulNaNClipElim(NNModule* nn) {
  using namespace nom::repr;

  nom::nql::GraphMatcher gm;
  gm.initFromString(R"NQL(def query {
    %concat_out, %split_info = Concat(*)
    %add = Add(%concat_out, %add_in)
    %mul = Mul(%add, %mul_in)
    %replace = ReplaceNaN(%mul)
    %out = Clip(%replace)
  })NQL");
  CAFFE_ENFORCE(gm.getMatcher(), "Unable to parse NQL query.");

  // Iterate through each match and replace them
  for (const auto& match : gm.getMatches(nn->dataFlow)) {
    // Various attributes we care about for this fusion
    NOM_REQUIRE_OR_CONT(nn::get<Concat>(match["Concat"])->getAxis() == 1);
    NOM_REQUIRE_OR_CONT(nn::get<Add>(match["Add"])->getBroadcast() == 1);
    NOM_REQUIRE_OR_CONT(nn::get<Mul>(match["Mul"])->getBroadcast() == 1);
    NOM_REQUIRE_OR_CONT(
        std::abs(nn::get<ReplaceNaN>(match["ReplaceNaN"])->getValue()) < 0.01);

    // Figure out the input/output order (creating new nodes if needed)
    std::vector<NNGraph::NodeRef> inputs, outputs;

    // First set up the inputs
    inputs.emplace_back(match["\%add_in"]);
    inputs.emplace_back(match["\%mul_in"]);
    for (const auto& concat_input : nn::getInputs(match["Concat"])) {
      inputs.emplace_back(concat_input);
    }

    // Set up the outputs
    outputs.emplace_back(match["\%out"]);
    // TODO(duc): The subgraph matcher doesn't yet handle patterns
    // that are not trees, meaning the %split_info node is not yet
    // matched.
    outputs.emplace_back(nn::getOutputs(match["Concat"]).at(1));

    auto min = nn::get<Clip>(match["Clip"])->getMin();
    auto max = nn::get<Clip>(match["Clip"])->getMax();
    // This will do all the work
    nn->replaceSubgraphWithOperator<ConcatAddMulReplaceNaNClip>(
        match.subgraph, inputs, outputs, min, max);
  }
}

REGISTER_OPT_PASS_FROM_FUNC(ConcatAddMulNaNClipElim, concatAddMulNaNClipElim);

void gatherFuse8BitRowwiseQuantFloatMulLengthsSumElim(NNModule* nn) {
  using namespace nom::repr;

  nom::nql::GraphMatcher gm;
  gm.initFromString(R"NQL(def query {
    %gather = Gather(%a, %b)
    %ff = Fused8BitRowwiseQuantizedToFloat(%gather)
    %mu = Mul(%ff, %mul_in)
    %out = LengthsSum(%mu, %len_in)
  })NQL");
  CAFFE_ENFORCE(gm.getMatcher(), "Unable to parse NQL query.");

  // Iterate through each match and replace them
  for (const auto& match : gm.getMatches(nn->dataFlow)) {
    NOM_REQUIRE_OR_CONT(nn::get<Mul>(match["Mul"])->getBroadcast() == 1);
    NOM_REQUIRE_OR_CONT(nn::get<Mul>(match["Mul"])->getAxis() == 0);
    // Figure out the input/output order (creating new nodes if needed)
    std::vector<NNGraph::NodeRef> inputs, outputs;

    // First set up the inputs
    const auto& gather_inputs = nn::getInputs(match["Gather"]);
    inputs.emplace_back(gather_inputs.at(0));
    inputs.emplace_back(match["\%mul_in"]);
    inputs.emplace_back(gather_inputs.at(1));
    inputs.emplace_back(match["\%len_in"]);

    // Set up the outputs
    outputs.emplace_back(match["\%out"]);

    // Check if outputs of the subgraph contain intermediate tensors
    // If so, abort fusion.
    std::unordered_set<NNGraph::NodeRef> internal;
    for (const auto& output : nn::getOutputs(match["Gather"])) {
      internal.emplace(output);
    }
    for (const auto& output :
         nn::getOutputs(match["Fused8BitRowwiseQuantizedToFloat"])) {
      internal.emplace(output);
    }
    for (const auto& output : nn::getOutputs(match["Mul"])) {
      internal.emplace(output);
    }
    for (const auto& output : nn::getOutputs(match.subgraph)) {
      if (internal.count(output)) {
        LOG(INFO) << "Skip fusing Gather-Fused8BitRowwiseQuantizedToFloat"
                  << "-Mul-LengthsSum as internal tensor "
                  << nn::getName(output)
                  << " is used as external output of the subgraph.";
        return;
      }
    }

    // This will do all the work
    nn->replaceSubgraphWithOperator<SparseLengthsWeightedSumFused8BitRowwise>(
        match.subgraph, inputs, outputs);
  }
}

REGISTER_OPT_PASS_FROM_FUNC(
    GatherFuse8BitRowwiseQuantFloatMulLengthsSumElim,
    gatherFuse8BitRowwiseQuantFloatMulLengthsSumElim);

} // namespace opt
} // namespace caffe2