File: in_batch_broadcast.cc

package info (click to toggle)
pytorch 1.13.1%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 139,252 kB
  • sloc: cpp: 1,100,274; python: 706,454; ansic: 83,052; asm: 7,618; java: 3,273; sh: 2,841; javascript: 612; makefile: 323; xml: 269; ruby: 185; yacc: 144; objc: 68; lex: 44
file content (177 lines) | stat: -rw-r--r-- 5,859 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
#include "caffe2/opt/custom/in_batch_broadcast.h"

#include "caffe2/utils/proto_utils.h"

namespace caffe2 {
namespace opt {

const std::string kFP16_SUFFIX = "_fp16";
const std::string kFP32_SUFFIX = "_fp32";
const std::string kTILE_SUFFIX = "_tile";

void inBatchBroadcast(
    NetDef* net,
    const std::unordered_set<std::string>& to_broadcast_blobs,
    int32_t batch_size,
    ShapeInfoMap& shape_hints) {
  int current_pos = net->op_size();
  caffe2::NetDef broadcast_net;
  broadcast_net.CopyFrom(*net);
  broadcast_net.clear_op();
  std::vector<OperatorDef> pre_ops;
  std::vector<OperatorDef> post_ops;

  // Heuristic: if any of to_broadcast_blobs is connected to
  // Fused8BitRowwiseQuantizedToFloat only, we move Tile after
  // Fused8BitRowwiseQuantizedToFloat to save some compute.
  std::unordered_map<std::string, int> consumers;
  for (const auto& op : net->op()) {
    for (const auto& i : op.input()) {
      if (to_broadcast_blobs.count(i)) {
        consumers[i] += 1;
      }
    }
  }
  std::unordered_map<std::string, std::string> to_broadcast_replace;
  for (const auto& op : net->op()) {
    bool match = false;
    if (op.type() == "Fused8BitRowwiseQuantizedToFloat") {
      CAFFE_ENFORCE_EQ(
          op.input_size(),
          1,
          "Fused8BitRowwiseQuantizedToFloat can only have 1 input");
      CAFFE_ENFORCE_EQ(
          op.output_size(),
          1,
          "Fused8BitRowwiseQuantizedToFloat can only have 1 output");
      const auto it = consumers.find(op.input(0));
      if (it != consumers.end() && it->second == 1) {
        match = true;
      }
    }
    if (match) {
      to_broadcast_replace.emplace(op.input(0), op.output(0));
      pre_ops.emplace_back(op);
    } else {
      post_ops.emplace_back(op);
    }
  }
  // Build a reverse mapping. Not that such mapping is bijective, because if it
  // is not, some key will have multiple consumers, which violates the single
  // consumer condition above.
  std::unordered_map<std::string, std::string> reversed;
  for (const auto& kv : to_broadcast_replace) {
    reversed.emplace(kv.second, kv.first);
  }

  std::unordered_set<std::string> to_broadcast_copy;
  for (const auto& b : to_broadcast_blobs) {
    const auto it = to_broadcast_replace.find(b);
    if (it != to_broadcast_replace.end()) {
      to_broadcast_copy.emplace(it->second);
    } else {
      to_broadcast_copy.emplace(b);
    }
  }
  for (const auto& op : pre_ops) {
    broadcast_net.add_op()->CopyFrom(op);
  }

  auto setShape = [&shape_hints, batch_size](
                      const std::string& blob,
                      const std::string& new_blob) mutable {
    auto it = shape_hints.find(blob);
    CAFFE_ENFORCE(it != shape_hints.end(), "Cannot find shape info for ", blob);
    auto& shape = it->second;
    CAFFE_ENFORCE(shape.shape.dims_size(), "Dim size for ", blob, " is 0");
    if (!new_blob.empty()) {
      shape_hints.emplace(new_blob, shape);
    }
    CAFFE_ENFORCE_EQ(
        shape.shape.dims(0) % batch_size,
        0,
        "Dims(0) for ",
        blob,
        ": ",
        shape.shape.dims(0),
        " cannot be divided by batch_size ",
        batch_size);
    shape.shape.set_dims(0, shape.shape.dims(0) / batch_size);
    shape.setDimType(0, TensorBoundShape_DimType_CONSTANT);
  };

  for (const auto& blob : to_broadcast_copy) {
    auto it = shape_hints.find(blob);
    CAFFE_ENFORCE(it != shape_hints.end(), "Cannot find shape info for ", blob);
    const auto& shape = it->second;
    CAFFE_ENFORCE_GT(shape.shape.dims_size(), 0, "Dim size for ", blob, " is 0");

    // If an op like Fused8BitRowwiseQuantizedToFloat ends up on CPU and
    // Tile ends up on an accelerator and only FP16 is supported, then we want
    // to make sure conversion from FP32 to FP16 is done on CPU to save cycles
    // on accelerator.
    const std::string blob_fp16 = blob + kFP16_SUFFIX;
    const std::string blob_fp32 = blob + kFP32_SUFFIX;
    const bool isFp32Optimization =
        (shape.shape.data_type() == TensorProto_DataType_FLOAT);
    if (isFp32Optimization) {
      auto* op_fp16 = broadcast_net.add_op();
      op_fp16->CopyFrom(CreateOperatorDef(
          "FloatToHalf",
          "",
          {blob},
          {blob_fp16},
          {MakeArgument<int>("net_pos", current_pos++)}));
      auto* op_fp32 = broadcast_net.add_op();
      op_fp32->CopyFrom(CreateOperatorDef(
          "HalfToFloat",
          "",
          {blob_fp16},
          {blob_fp32},
          {MakeArgument<int>("net_pos", current_pos++)}));
    }

    std::string blob_tile = blob + kTILE_SUFFIX;
    auto* op_tile = broadcast_net.add_op();
    op_tile->CopyFrom(CreateOperatorDef(
        "Tile",
        "",
        {isFp32Optimization ? blob_fp32 : blob},
        {blob_tile},
        {MakeArgument<int>("tiles", batch_size),
         MakeArgument<int>("axis", 0),
         // Indicating that we are tiling to max_batch_size
         MakeArgument<int>("dynamic", 1),
         MakeArgument<int>("net_pos", current_pos++)}));

    setShape(blob, blob_tile);
    if (isFp32Optimization) {
      const auto adjusted_shape = shape_hints[blob];

      auto shape_fp16 = adjusted_shape;
      shape_fp16.shape.set_data_type(TensorProto_DataType_FLOAT16);
      shape_hints.emplace(blob_fp16, shape_fp16);

      shape_hints.emplace(blob_fp32, adjusted_shape);
    }

    const auto rit = reversed.find(blob);
    if (rit != reversed.end()) {
      const auto& original_input = rit->second;
      setShape(original_input, "");
    }
  }

  for (auto& op : post_ops) {
    for (int j = 0; j < op.input_size(); j++) {
      if (to_broadcast_copy.count(op.input(j))) {
        *op.mutable_input(j) = op.input(j) + kTILE_SUFFIX;
      }
    }
    broadcast_net.add_op()->CopyFrom(op);
  }
  net->Swap(&broadcast_net);
}

} // namespace opt
} // namespace caffe2