1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177
|
#include "caffe2/opt/custom/in_batch_broadcast.h"
#include "caffe2/utils/proto_utils.h"
namespace caffe2 {
namespace opt {
const std::string kFP16_SUFFIX = "_fp16";
const std::string kFP32_SUFFIX = "_fp32";
const std::string kTILE_SUFFIX = "_tile";
void inBatchBroadcast(
NetDef* net,
const std::unordered_set<std::string>& to_broadcast_blobs,
int32_t batch_size,
ShapeInfoMap& shape_hints) {
int current_pos = net->op_size();
caffe2::NetDef broadcast_net;
broadcast_net.CopyFrom(*net);
broadcast_net.clear_op();
std::vector<OperatorDef> pre_ops;
std::vector<OperatorDef> post_ops;
// Heuristic: if any of to_broadcast_blobs is connected to
// Fused8BitRowwiseQuantizedToFloat only, we move Tile after
// Fused8BitRowwiseQuantizedToFloat to save some compute.
std::unordered_map<std::string, int> consumers;
for (const auto& op : net->op()) {
for (const auto& i : op.input()) {
if (to_broadcast_blobs.count(i)) {
consumers[i] += 1;
}
}
}
std::unordered_map<std::string, std::string> to_broadcast_replace;
for (const auto& op : net->op()) {
bool match = false;
if (op.type() == "Fused8BitRowwiseQuantizedToFloat") {
CAFFE_ENFORCE_EQ(
op.input_size(),
1,
"Fused8BitRowwiseQuantizedToFloat can only have 1 input");
CAFFE_ENFORCE_EQ(
op.output_size(),
1,
"Fused8BitRowwiseQuantizedToFloat can only have 1 output");
const auto it = consumers.find(op.input(0));
if (it != consumers.end() && it->second == 1) {
match = true;
}
}
if (match) {
to_broadcast_replace.emplace(op.input(0), op.output(0));
pre_ops.emplace_back(op);
} else {
post_ops.emplace_back(op);
}
}
// Build a reverse mapping. Not that such mapping is bijective, because if it
// is not, some key will have multiple consumers, which violates the single
// consumer condition above.
std::unordered_map<std::string, std::string> reversed;
for (const auto& kv : to_broadcast_replace) {
reversed.emplace(kv.second, kv.first);
}
std::unordered_set<std::string> to_broadcast_copy;
for (const auto& b : to_broadcast_blobs) {
const auto it = to_broadcast_replace.find(b);
if (it != to_broadcast_replace.end()) {
to_broadcast_copy.emplace(it->second);
} else {
to_broadcast_copy.emplace(b);
}
}
for (const auto& op : pre_ops) {
broadcast_net.add_op()->CopyFrom(op);
}
auto setShape = [&shape_hints, batch_size](
const std::string& blob,
const std::string& new_blob) mutable {
auto it = shape_hints.find(blob);
CAFFE_ENFORCE(it != shape_hints.end(), "Cannot find shape info for ", blob);
auto& shape = it->second;
CAFFE_ENFORCE(shape.shape.dims_size(), "Dim size for ", blob, " is 0");
if (!new_blob.empty()) {
shape_hints.emplace(new_blob, shape);
}
CAFFE_ENFORCE_EQ(
shape.shape.dims(0) % batch_size,
0,
"Dims(0) for ",
blob,
": ",
shape.shape.dims(0),
" cannot be divided by batch_size ",
batch_size);
shape.shape.set_dims(0, shape.shape.dims(0) / batch_size);
shape.setDimType(0, TensorBoundShape_DimType_CONSTANT);
};
for (const auto& blob : to_broadcast_copy) {
auto it = shape_hints.find(blob);
CAFFE_ENFORCE(it != shape_hints.end(), "Cannot find shape info for ", blob);
const auto& shape = it->second;
CAFFE_ENFORCE_GT(shape.shape.dims_size(), 0, "Dim size for ", blob, " is 0");
// If an op like Fused8BitRowwiseQuantizedToFloat ends up on CPU and
// Tile ends up on an accelerator and only FP16 is supported, then we want
// to make sure conversion from FP32 to FP16 is done on CPU to save cycles
// on accelerator.
const std::string blob_fp16 = blob + kFP16_SUFFIX;
const std::string blob_fp32 = blob + kFP32_SUFFIX;
const bool isFp32Optimization =
(shape.shape.data_type() == TensorProto_DataType_FLOAT);
if (isFp32Optimization) {
auto* op_fp16 = broadcast_net.add_op();
op_fp16->CopyFrom(CreateOperatorDef(
"FloatToHalf",
"",
{blob},
{blob_fp16},
{MakeArgument<int>("net_pos", current_pos++)}));
auto* op_fp32 = broadcast_net.add_op();
op_fp32->CopyFrom(CreateOperatorDef(
"HalfToFloat",
"",
{blob_fp16},
{blob_fp32},
{MakeArgument<int>("net_pos", current_pos++)}));
}
std::string blob_tile = blob + kTILE_SUFFIX;
auto* op_tile = broadcast_net.add_op();
op_tile->CopyFrom(CreateOperatorDef(
"Tile",
"",
{isFp32Optimization ? blob_fp32 : blob},
{blob_tile},
{MakeArgument<int>("tiles", batch_size),
MakeArgument<int>("axis", 0),
// Indicating that we are tiling to max_batch_size
MakeArgument<int>("dynamic", 1),
MakeArgument<int>("net_pos", current_pos++)}));
setShape(blob, blob_tile);
if (isFp32Optimization) {
const auto adjusted_shape = shape_hints[blob];
auto shape_fp16 = adjusted_shape;
shape_fp16.shape.set_data_type(TensorProto_DataType_FLOAT16);
shape_hints.emplace(blob_fp16, shape_fp16);
shape_hints.emplace(blob_fp32, adjusted_shape);
}
const auto rit = reversed.find(blob);
if (rit != reversed.end()) {
const auto& original_input = rit->second;
setShape(original_input, "");
}
}
for (auto& op : post_ops) {
for (int j = 0; j < op.input_size(); j++) {
if (to_broadcast_copy.count(op.input(j))) {
*op.mutable_input(j) = op.input(j) + kTILE_SUFFIX;
}
}
broadcast_net.add_op()->CopyFrom(op);
}
net->Swap(&broadcast_net);
}
} // namespace opt
} // namespace caffe2
|