File: dead_code_elim_test.cc

package info (click to toggle)
pytorch 1.13.1%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 139,252 kB
  • sloc: cpp: 1,100,274; python: 706,454; ansic: 83,052; asm: 7,618; java: 3,273; sh: 2,841; javascript: 612; makefile: 323; xml: 269; ruby: 185; yacc: 144; objc: 68; lex: 44
file content (57 lines) | stat: -rw-r--r-- 1,576 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
#include "caffe2/core/common.h"
#include "caffe2/opt/converter.h"
#include "caffe2/opt/passes.h"

#include <gtest/gtest.h>

TEST(DeadCodeElim, BasicElim) {
  caffe2::NetDef net;
  {
    caffe2::OperatorDef* def = net.add_op();
    def->set_type("Fake");
    def->add_input("X");
    def->add_output("Y");
  }

  auto nn = caffe2::convertToNNModule(net);
  auto pass = caffe2::OptimizationPassRegistry()->Create("DeadCodeElim", &nn);
  pass->run();
  auto optimized_net = caffe2::convertToCaffe2Proto(nn, net);
  EXPECT_EQ(optimized_net.op().size(), 0);
}

TEST(DeadCodeElim, BasicNoElim) {
  caffe2::NetDef net;
  {
    caffe2::OperatorDef* def = net.add_op();
    def->set_type("Fake");
    def->add_input("X");
    def->add_output("Y");
  }
  net.add_external_output("Y");

  auto nn = caffe2::convertToNNModule(net);
  auto pass = caffe2::OptimizationPassRegistry()->Create("DeadCodeElim", &nn);
  pass->run();
  auto optimized_net = caffe2::convertToCaffe2Proto(nn, net);
  EXPECT_EQ(optimized_net.op().size(), 1);
}

TEST(DeadCodeElim, PartiallyUsedNoElim) {
  caffe2::NetDef net;
  {
    caffe2::OperatorDef* def = net.add_op();
    def->set_type("Fake");
    def->add_input("X");
    def->add_output("Y");
    def->add_output("Z");
  }
  net.add_external_output("Y");
  // Z is unused, but we should keep Fake because Y is

  auto nn = caffe2::convertToNNModule(net);
  auto pass = caffe2::OptimizationPassRegistry()->Create("DeadCodeElim", &nn);
  pass->run();
  auto optimized_net = caffe2::convertToCaffe2Proto(nn, net);
  EXPECT_EQ(optimized_net.op().size(), 1);
}