1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77
|
#include "caffe2/core/common.h"
#include "caffe2/opt/converter.h"
#include "caffe2/opt/device.h"
#include <gtest/gtest.h>
using namespace nom::repr;
#define ADD_ARG(_op, _name, _type, _val) \
{ \
caffe2::Argument* arg = _op->add_arg(); \
arg->set_name(_name); \
arg->set_##_type(_val); \
}
TEST(DeviceTest, InsertCopies) {
caffe2::NetDef net;
for (auto i = 0; i < 9; ++i) {
if (i % 3 == 0) {
caffe2::OperatorDef* def = net.add_op();
def->set_type("Conv");
def->add_input("X");
def->add_input("W" + c10::to_string(i));
def->add_input("b" + c10::to_string(i));
ADD_ARG(def, "kernel", i, 3);
ADD_ARG(def, "stride", i, 1);
ADD_ARG(def, "pad", i, 0);
ADD_ARG(def, "order", s, "NCHW");
def->add_output("X");
def->mutable_device_option()->set_device_type(caffe2::PROTO_CPU);
} else {
caffe2::OperatorDef* def = net.add_op();
def->set_type("Relu");
def->add_input("X");
def->add_output("X");
def->mutable_device_option()->set_device_type(caffe2::PROTO_CPU);
}
}
auto nn = caffe2::convertToNNModule(net);
for (auto node : nn.dataFlow.getMutableNodes()) {
if (nn::is<Relu>(node)) {
auto annot = nn::get<NeuralNetOperator>(node)->getMutableAnnotation();
auto c2_annot = dyn_cast<caffe2::Caffe2Annotation>(annot);
c2_annot->setDeviceType(caffe2::PROTO_OPENCL);
}
}
caffe2::opt::insertCopies(
&nn,
[](NNGraph::NodeRef node) {
// Ignore all tensors
if (!nn::is<NeuralNetOperator>(node)) {
return true;
}
auto annot = nn::get<NeuralNetOperator>(node)->getMutableAnnotation();
NOM_REQUIRE_OR_RET_FALSE(annot);
auto c2_annot = dyn_cast<caffe2::Caffe2Annotation>(annot);
NOM_REQUIRE_OR_RET_FALSE(c2_annot);
return c2_annot->getDeviceType() == caffe2::PROTO_OPENCL;
},
[](NNGraph& g) {
return g.createNode(std::make_unique<GenericOperator>());
},
[](NNGraph& g) {
return g.createNode(std::make_unique<GenericOperator>());
});
auto proto = caffe2::convertToCaffe2Proto(nn, net);
// Conv -> Relu -> Relu
// becomes
// Conv -> Generic -> Relu -> Relu -> Generic
// thus
// 9 ops of this pattern becomes 15
EXPECT_EQ(proto.op().size(), 15);
}
|