1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253
|
#include <gtest/gtest.h>
#include "caffe2/opt/converter.h"
#include "caffe2/opt/distributed.h"
caffe2::NetDef fakeNet() {
caffe2::NetDef net;
{
caffe2::OperatorDef* def = net.add_op();
def->set_type("Fake");
def->add_input("X");
def->add_output("Y");
}
{
caffe2::OperatorDef* def = net.add_op();
def->set_type("Fake");
def->add_input("Y");
def->add_output("Z");
}
{
caffe2::OperatorDef* def = net.add_op();
def->set_type("Fake");
def->add_input("Z");
def->add_input("X");
def->add_output("W");
}
net.add_external_input("X");
net.add_external_output("Y");
net.add_external_output("W");
return net;
}
caffe2::NetDef fakeNetWithDuplicateKeyInExInputAndOutput() {
caffe2::NetDef net;
{
caffe2::OperatorDef* def = net.add_op();
def->set_type("Fake");
def->add_input("X");
def->add_output("Y");
}
{
caffe2::OperatorDef* def = net.add_op();
def->set_type("Fake");
def->add_input("Y");
def->add_output("X");
}
{
caffe2::OperatorDef* def = net.add_op();
def->set_type("Fake");
def->add_input("Y");
def->add_output("W");
}
net.add_external_input("X");
net.add_external_output("X");
net.add_external_output("Y");
net.add_external_output("W");
return net;
}
// Common usage
using namespace nom::repr;
TEST(Converter, DeclareExport) {
auto net = fakeNet();
caffe2::injectDataEdgeIndicators(&net);
auto nn = caffe2::convertToNNModule(net);
// This is in nom::repr
auto inputs = nn::filter<Declare>(nn);
auto outputs = nn::filter<Export>(nn);
auto count = 0;
for (const auto& declareNode : inputs) {
count++;
// This call fails an assertion if it isn't true
auto delcare_op = nn::get<Declare>(declareNode);
// String version of name can be extracted like this
EXPECT_EQ(delcare_op->getName(), "Declare");
// What used to be external_input (note that getOutputs returns a vector)
auto inputNode = nn::getOutputs(declareNode).at(0);
// Key idea is that we are working with nodes that hold things,
// so nn::get<T> is very commonly used
auto input = nn::get<Tensor>(inputNode);
// We only had one external input in the original net,
// so this should be true
EXPECT_EQ(input->getName(), "X");
}
// Only 1 external input
EXPECT_EQ(count, 1);
// Reset for external output
count = 0;
for (const auto& exportNode : outputs) {
count++;
}
// 2 external outputs
EXPECT_EQ(count, 2);
}
TEST(Distributed, InsertDeviceOptions) {
auto net = fakeNet();
caffe2::injectDataEdgeIndicators(&net);
auto nn = caffe2::convertToNNModule(net);
caffe2::DeviceOption d;
d.set_device_type(1337);
caffe2::addBlobDeviceOptions({{"X", d}, {"Y", d}, {"W", d}}, &nn);
for (auto& ns : {nn::filter<Declare>(nn), nn::filter<Export>(nn)}) {
for (auto& node : ns) {
auto op = nn::get<NeuralNetOperator>(node);
auto annot = dyn_cast<caffe2::Caffe2Annotation>(op->getAnnotation());
// NOLINTNEXTLINE(performance-unnecessary-copy-initialization)
auto d = annot->getDeviceOption();
EXPECT_EQ(d.device_type(), 1337);
}
}
}
TEST(Distributed, InsertDeviceOptionsFailureCase) {
auto net = fakeNet();
caffe2::injectDataEdgeIndicators(&net);
auto nn = caffe2::convertToNNModule(net);
caffe2::DeviceOption d;
d.set_device_type(1337);
// We can only use correct blob names, expect failure otherwise
// NOLINTNEXTLINE(hicpp-avoid-goto,cppcoreguidelines-avoid-goto)
EXPECT_THROW(
{
caffe2::addBlobDeviceOptions(
{{"X", d}, {"Y", d}, {"W", d}, {"FAKE", d}}, &nn);
},
std::exception);
}
TEST(Distributed, InsertDeviceOptionsDuplicateKeyAcrossExternalInputAndOutput) {
auto net = fakeNetWithDuplicateKeyInExInputAndOutput();
caffe2::injectDataEdgeIndicators(&net);
auto nn = caffe2::convertToNNModule(net);
caffe2::DeviceOption d;
d.set_device_type(1337);
caffe2::addBlobDeviceOptions({{"X", d}, {"Y", d}, {"W", d}}, &nn);
for (auto& ns : {nn::filter<Declare>(nn), nn::filter<Export>(nn)}) {
for (auto& node : ns) {
auto op = nn::get<NeuralNetOperator>(node);
auto annot = dyn_cast<caffe2::Caffe2Annotation>(op->getAnnotation());
// NOLINTNEXTLINE(performance-unnecessary-copy-initialization)
auto d_annot = annot->getDeviceOption();
EXPECT_EQ(d_annot.device_type(), 1337);
}
}
}
TEST(Distributed, InsertDeviceOptionsDuplicateKeyInExternalInput) {
auto net = fakeNetWithDuplicateKeyInExInputAndOutput();
net.add_external_input("X");
caffe2::injectDataEdgeIndicators(&net);
auto nn = caffe2::convertToNNModule(net);
caffe2::DeviceOption d;
d.set_device_type(1337);
EXPECT_THROW(
{
caffe2::addBlobDeviceOptions(
{{"X", d}, {"Y", d}, {"W", d}}, &nn);
},
std::exception);
}
TEST(Distributed, InsertDeviceOptionsDuplicateKeyInExternalOutput) {
auto net = fakeNetWithDuplicateKeyInExInputAndOutput();
net.add_external_output("X");
caffe2::injectDataEdgeIndicators(&net);
auto nn = caffe2::convertToNNModule(net);
caffe2::DeviceOption d;
d.set_device_type(1337);
EXPECT_THROW(
{
caffe2::addBlobDeviceOptions(
{{"X", d}, {"Y", d}, {"W", d}}, &nn);
},
std::exception);
}
TEST(Converter, InjectDataEdgeIndicators) {
auto net = fakeNet();
auto nn = caffe2::convertToNNModule(net);
caffe2::injectDataEdgeIndicators(&nn);
auto new_net = caffe2::convertToCaffe2Proto(nn);
EXPECT_EQ(new_net.op_size(), 3 + 1 + 2); // Inserted 1 Declare and 2 Export
auto declare_count = 0;
auto export_count = 0;
for (const auto& op : new_net.op()) {
declare_count += op.type() == "Declare";
export_count += op.type() == "Export";
}
EXPECT_EQ(declare_count, 1);
EXPECT_EQ(export_count, 2);
// Remove them from the network
EXPECT_EQ(new_net.external_input_size(), 0);
EXPECT_EQ(new_net.external_output_size(), 0);
auto new_nn = caffe2::convertToNNModule(new_net);
caffe2::removeDataEdgeIndicators(&new_nn);
new_net = caffe2::convertToCaffe2Proto(new_nn);
for (const auto& op : new_net.op()) {
EXPECT_NE(op.type(), "Declare");
EXPECT_NE(op.type(), "Export");
}
EXPECT_EQ(new_net.external_input_size(), 1);
EXPECT_EQ(new_net.external_output_size(), 2);
}
// Main usage
TEST(Converter, OverloadedConvertToNNModule) {
auto net = fakeNet();
caffe2::DeviceOption d;
d.set_device_type(1337);
auto nn = caffe2::convertToNNModule(net, {{"X", d}, {"Y", d}, {"W", d}});
for (auto& ns : {nn::filter<Declare>(nn), nn::filter<Export>(nn)}) {
for (auto& node : ns) {
auto op = nn::get<NeuralNetOperator>(node);
auto annot = dyn_cast<caffe2::Caffe2Annotation>(op->getAnnotation());
// NOLINTNEXTLINE(performance-unnecessary-copy-initialization)
auto d = annot->getDeviceOption();
EXPECT_EQ(d.device_type(), 1337);
}
}
}
TEST(Converter, OverloadedConvertToNNModuleFailure) {
auto net = fakeNet();
caffe2::DeviceOption d;
d.set_device_type(1337);
// We can only use correct blob names, expect failure otherwise
// NOLINTNEXTLINE(hicpp-avoid-goto,cppcoreguidelines-avoid-goto)
EXPECT_THROW(
{
auto nn = caffe2::convertToNNModule(
net, {{"X", d}, {"Y", d}, {"W", d}, {"FAKE", d}});
},
std::exception);
}
|