File: distributed_test.cc

package info (click to toggle)
pytorch 1.13.1%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 139,252 kB
  • sloc: cpp: 1,100,274; python: 706,454; ansic: 83,052; asm: 7,618; java: 3,273; sh: 2,841; javascript: 612; makefile: 323; xml: 269; ruby: 185; yacc: 144; objc: 68; lex: 44
file content (253 lines) | stat: -rw-r--r-- 7,372 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
#include <gtest/gtest.h>
#include "caffe2/opt/converter.h"
#include "caffe2/opt/distributed.h"

caffe2::NetDef fakeNet() {
  caffe2::NetDef net;

  {
    caffe2::OperatorDef* def = net.add_op();
    def->set_type("Fake");
    def->add_input("X");
    def->add_output("Y");
  }
  {
    caffe2::OperatorDef* def = net.add_op();
    def->set_type("Fake");
    def->add_input("Y");
    def->add_output("Z");
  }
  {
    caffe2::OperatorDef* def = net.add_op();
    def->set_type("Fake");
    def->add_input("Z");
    def->add_input("X");
    def->add_output("W");
  }
  net.add_external_input("X");
  net.add_external_output("Y");
  net.add_external_output("W");

  return net;
}

caffe2::NetDef fakeNetWithDuplicateKeyInExInputAndOutput() {
  caffe2::NetDef net;

  {
    caffe2::OperatorDef* def = net.add_op();
    def->set_type("Fake");
    def->add_input("X");
    def->add_output("Y");
  }
  {
    caffe2::OperatorDef* def = net.add_op();
    def->set_type("Fake");
    def->add_input("Y");
    def->add_output("X");
  }
  {
    caffe2::OperatorDef* def = net.add_op();
    def->set_type("Fake");
    def->add_input("Y");
    def->add_output("W");
  }
  net.add_external_input("X");
  net.add_external_output("X");
  net.add_external_output("Y");
  net.add_external_output("W");

  return net;
}
// Common usage
using namespace nom::repr;

TEST(Converter, DeclareExport) {
  auto net = fakeNet();
  caffe2::injectDataEdgeIndicators(&net);
  auto nn = caffe2::convertToNNModule(net);


  // This is in nom::repr
  auto inputs = nn::filter<Declare>(nn);
  auto outputs = nn::filter<Export>(nn);

  auto count = 0;
  for (const auto& declareNode : inputs) {
    count++;
    // This call fails an assertion if it isn't true
    auto delcare_op = nn::get<Declare>(declareNode);
    // String version of name can be extracted like this
    EXPECT_EQ(delcare_op->getName(), "Declare");

    // What used to be external_input (note that getOutputs returns a vector)
    auto inputNode = nn::getOutputs(declareNode).at(0);

    // Key idea is that we are working with nodes that hold things,
    // so nn::get<T> is very commonly used
    auto input = nn::get<Tensor>(inputNode);
    // We only had one external input in the original net,
    // so this should be true
    EXPECT_EQ(input->getName(), "X");
  }
  // Only 1 external input
  EXPECT_EQ(count, 1);

  // Reset for external output
  count = 0;
  for (const auto& exportNode : outputs) {
    count++;
  }
  // 2 external outputs
  EXPECT_EQ(count, 2);
}

TEST(Distributed, InsertDeviceOptions) {
  auto net = fakeNet();
  caffe2::injectDataEdgeIndicators(&net);
  auto nn = caffe2::convertToNNModule(net);
  caffe2::DeviceOption d;
  d.set_device_type(1337);
  caffe2::addBlobDeviceOptions({{"X", d}, {"Y", d}, {"W", d}}, &nn);

  for (auto& ns : {nn::filter<Declare>(nn), nn::filter<Export>(nn)}) {
    for (auto& node : ns) {
      auto op = nn::get<NeuralNetOperator>(node);
      auto annot = dyn_cast<caffe2::Caffe2Annotation>(op->getAnnotation());
      // NOLINTNEXTLINE(performance-unnecessary-copy-initialization)
      auto d = annot->getDeviceOption();
      EXPECT_EQ(d.device_type(), 1337);
    }
  }
}

TEST(Distributed, InsertDeviceOptionsFailureCase) {
  auto net = fakeNet();
  caffe2::injectDataEdgeIndicators(&net);
  auto nn = caffe2::convertToNNModule(net);
  caffe2::DeviceOption d;
  d.set_device_type(1337);
  // We can only use correct blob names, expect failure otherwise
  // NOLINTNEXTLINE(hicpp-avoid-goto,cppcoreguidelines-avoid-goto)
  EXPECT_THROW(
      {
        caffe2::addBlobDeviceOptions(
            {{"X", d}, {"Y", d}, {"W", d}, {"FAKE", d}}, &nn);
      },
      std::exception);
}

TEST(Distributed, InsertDeviceOptionsDuplicateKeyAcrossExternalInputAndOutput) {
  auto net = fakeNetWithDuplicateKeyInExInputAndOutput();
  caffe2::injectDataEdgeIndicators(&net);
  auto nn = caffe2::convertToNNModule(net);
  caffe2::DeviceOption d;
  d.set_device_type(1337);
  caffe2::addBlobDeviceOptions({{"X", d}, {"Y", d}, {"W", d}}, &nn);
  for (auto& ns : {nn::filter<Declare>(nn), nn::filter<Export>(nn)}) {
    for (auto& node : ns) {
      auto op = nn::get<NeuralNetOperator>(node);
      auto annot = dyn_cast<caffe2::Caffe2Annotation>(op->getAnnotation());
      // NOLINTNEXTLINE(performance-unnecessary-copy-initialization)
      auto d_annot = annot->getDeviceOption();
      EXPECT_EQ(d_annot.device_type(), 1337);
    }
  }
}

TEST(Distributed, InsertDeviceOptionsDuplicateKeyInExternalInput) {
  auto net = fakeNetWithDuplicateKeyInExInputAndOutput();
  net.add_external_input("X");
  caffe2::injectDataEdgeIndicators(&net);
  auto nn = caffe2::convertToNNModule(net);
  caffe2::DeviceOption d;
  d.set_device_type(1337);
  EXPECT_THROW(
      {
        caffe2::addBlobDeviceOptions(
            {{"X", d}, {"Y", d}, {"W", d}}, &nn);
      },
      std::exception);
}

TEST(Distributed, InsertDeviceOptionsDuplicateKeyInExternalOutput) {
  auto net = fakeNetWithDuplicateKeyInExInputAndOutput();
  net.add_external_output("X");
  caffe2::injectDataEdgeIndicators(&net);
  auto nn = caffe2::convertToNNModule(net);
  caffe2::DeviceOption d;
  d.set_device_type(1337);
  EXPECT_THROW(
      {
        caffe2::addBlobDeviceOptions(
            {{"X", d}, {"Y", d}, {"W", d}}, &nn);
      },
      std::exception);
}

TEST(Converter, InjectDataEdgeIndicators) {
  auto net = fakeNet();

  auto nn = caffe2::convertToNNModule(net);
  caffe2::injectDataEdgeIndicators(&nn);
  auto new_net = caffe2::convertToCaffe2Proto(nn);

  EXPECT_EQ(new_net.op_size(), 3 + 1 + 2); // Inserted 1 Declare and 2 Export

  auto declare_count = 0;
  auto export_count = 0;
  for (const auto& op : new_net.op()) {
    declare_count += op.type() == "Declare";
    export_count += op.type() == "Export";
  }
  EXPECT_EQ(declare_count, 1);
  EXPECT_EQ(export_count, 2);

  // Remove them from the network
  EXPECT_EQ(new_net.external_input_size(), 0);
  EXPECT_EQ(new_net.external_output_size(), 0);

  auto new_nn = caffe2::convertToNNModule(new_net);
  caffe2::removeDataEdgeIndicators(&new_nn);
  new_net = caffe2::convertToCaffe2Proto(new_nn);

  for (const auto& op : new_net.op()) {
    EXPECT_NE(op.type(), "Declare");
    EXPECT_NE(op.type(), "Export");
  }

  EXPECT_EQ(new_net.external_input_size(), 1);
  EXPECT_EQ(new_net.external_output_size(), 2);
}

// Main usage
TEST(Converter, OverloadedConvertToNNModule) {
  auto net = fakeNet();
  caffe2::DeviceOption d;
  d.set_device_type(1337);
  auto nn = caffe2::convertToNNModule(net, {{"X", d}, {"Y", d}, {"W", d}});

  for (auto& ns : {nn::filter<Declare>(nn), nn::filter<Export>(nn)}) {
    for (auto& node : ns) {
      auto op = nn::get<NeuralNetOperator>(node);
      auto annot = dyn_cast<caffe2::Caffe2Annotation>(op->getAnnotation());
      // NOLINTNEXTLINE(performance-unnecessary-copy-initialization)
      auto d = annot->getDeviceOption();
      EXPECT_EQ(d.device_type(), 1337);
    }
  }
}

TEST(Converter, OverloadedConvertToNNModuleFailure) {
  auto net = fakeNet();
  caffe2::DeviceOption d;
  d.set_device_type(1337);
  // We can only use correct blob names, expect failure otherwise
  // NOLINTNEXTLINE(hicpp-avoid-goto,cppcoreguidelines-avoid-goto)
  EXPECT_THROW(
      {
        auto nn = caffe2::convertToNNModule(
            net, {{"X", d}, {"Y", d}, {"W", d}, {"FAKE", d}});
      },
      std::exception);
}