File: fusion.cc

package info (click to toggle)
pytorch 1.13.1%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 139,252 kB
  • sloc: cpp: 1,100,274; python: 706,454; ansic: 83,052; asm: 7,618; java: 3,273; sh: 2,841; javascript: 612; makefile: 323; xml: 269; ruby: 185; yacc: 144; objc: 68; lex: 44
file content (128 lines) | stat: -rw-r--r-- 4,626 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
#include "caffe2/opt/fusion.h"
#include "caffe2/core/logging.h"
#include "caffe2/opt/converter.h"
#include "caffe2/opt/passes.h"

namespace caffe2 {
namespace opt {

using namespace nom;

// $$ X_{bn} = \frac{s(X - m)}{\sqrt{\sigma + \epsilon}} + b_{bn}$$
// $$ X_{conv} = X * W + b_{conv} $$
// thus, substituting $X$ with $X_{conv}$ in the BN equation we get:
// $$X_{bn} = X * \frac{sW}{\sqrt{\sigma + \epsilon}} + \frac{s(b_{conv} -
// m)}{\sqrt{\sigma + \epsilon}} + b_{bn}$$ or
// $$ W' = W\frac{s}{\sqrt{\sigma + \epsilon}}$$
// $$ b' = (b_{conv} - m)\frac{s}{\sqrt{\sigma + \epsilon}} + b_{bn}$$
bool fuseConvBNHelper(repr::NNModule* nn, caffe2::Workspace* ws) {
  size_t convOrder = 0;
  for (auto node_pair : repr::nn::dataIterator<repr::Conv>(nn->dataFlow)) {
    // NOLINTNEXTLINE(cppcoreguidelines-init-variables)
    repr::NNGraph::NodeRef convNode;
    // NOLINTNEXTLINE(cppcoreguidelines-init-variables)
    repr::Conv* conv;
    std::tie(conv, convNode) = node_pair;

    auto output = repr::nn::getOutputs(convNode).front();
    auto consumers = repr::nn::getConsumers(output);
    NOM_REQUIRE_OR_CONT(consumers.size() == 1);

    auto consumer = consumers.front();
    NOM_REQUIRE_OR_CONT(repr::nn::is<repr::BatchNormalization>(consumer));

    auto bnNode = consumer;
    auto bn = repr::nn::get<repr::BatchNormalization>(bnNode);
    auto bnOutputs = nn::getOutputs(bnNode);
    NOM_REQUIRE_OR_CONT(bnOutputs.size() == 1);
    auto bnOutput = bnOutputs.front();

    auto convInputs = repr::nn::getInputs(convNode);
    if (convInputs.size() < 2) {
      continue;
    }

    auto bnInputs = repr::nn::getInputs(bnNode);
    CAFFE_ENFORCE(
        bnInputs.size() >= 5, "Invalid batch normalization input size");

#define EXPOSE_TENSOR_DATA(name, index, inputs)                                \
  auto name = repr::nn::get<repr::Tensor>(inputs[index]);                      \
  assert(ws->HasBlob(name->getName()) && "Blob not in workspace");             \
  auto name##Tensor = BlobGetMutableTensor(ws->GetBlob(name->getName()), CPU); \
  auto name##Data = name##Tensor->mutable_data<float>();

    EXPOSE_TENSOR_DATA(filter, 1, convInputs);

    EXPOSE_TENSOR_DATA(scale, 1, bnInputs);
    EXPOSE_TENSOR_DATA(biasBN, 2, bnInputs);
    EXPOSE_TENSOR_DATA(mean, 3, bnInputs);
    EXPOSE_TENSOR_DATA(variance, 4, bnInputs);

    if (convInputs.size() == 2) {
      NOM_REQUIRE_OR_CONT(conv->getMutableAnnotation() != nullptr);
      auto annotation =
          dyn_cast<caffe2::Caffe2Annotation>(conv->getMutableAnnotation());
      NOM_REQUIRE_OR_CONT(annotation != nullptr);
      auto op = annotation->getOperatorDef();
      // NOLINTNEXTLINE(performance-unnecessary-copy-initialization)
      auto convName = op.name();

      while (true) {
        auto convBiasName = convName + "_bias" + to_string(convOrder);
        if (!ws->HasBlob(convBiasName)) {
          auto convBiasTensor = make_unique<repr::Tensor>(convBiasName);
          convBiasTensor->setType(repr::Tensor::DataType::Float);
          auto convBiasNode = nn->dataFlow.createNode(
              unique_dyn_cast<repr::NeuralNetData>(convBiasTensor));
          nn->inputs.insert(convBiasNode);
          nn->dataFlow.createEdge(convBiasNode, convNode);

          auto* blob = ws->CreateBlob(convBiasName);
          caffe2::TensorCPU* tensor = BlobGetMutableTensor(blob, caffe2::CPU);
          TORCH_CHECK_NOTNULL(tensor);
          // Get output channel
          size_t c = filterTensor->dim32(0);
          tensor->Resize(c);
          float* tensor_data = tensor->mutable_data<float>();
          memset(tensor_data, 0, tensor->nbytes());
          break;
        }
        convOrder++;
      }
    }

    convInputs = repr::nn::getInputs(convNode);
    EXPOSE_TENSOR_DATA(biasConv, 2, convInputs);

#undef EXPOSE_TENSOR_DATA

    // Assume M{CHW,HWC}
    auto chwDim = filterTensor->size_from_dim(1);
    for (auto c = 0; c < filterTensor->dim32(0); ++c) {
      float coeff =
          scaleData[c] / std::sqrt(varianceData[c] + bn->getEpsilon());
      for (auto i = 0; i < chwDim; ++i) {
        filterData[c * chwDim + i] *= coeff;
      }
      auto bias = (biasConvData[c] - meanData[c]) * coeff + biasBNData[c];
      biasConvData[c] = bias;
    }

    nn->dataFlow.deleteNode(output);
    nn->dataFlow.createEdge(convNode, bnOutput);
    nn->dataFlow.deleteNode(bnNode);
    return true;
  }
  return false;
}

void fuseConvBN(nom::repr::NNModule* nn, caffe2::Workspace* ws) {
  while (fuseConvBNHelper(nn, ws)) {
  }
}

REGISTER_WS_OPT_PASS_FROM_FUNC(FuseConvBN, fuseConvBN);

} // namespace opt
} // namespace caffe2