File: glow_net_transform.cc

package info (click to toggle)
pytorch 1.13.1%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 139,252 kB
  • sloc: cpp: 1,100,274; python: 706,454; ansic: 83,052; asm: 7,618; java: 3,273; sh: 2,841; javascript: 612; makefile: 323; xml: 269; ruby: 185; yacc: 144; objc: 68; lex: 44
file content (254 lines) | stat: -rw-r--r-- 8,325 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
#include "glow_net_transform.h"

#include <caffe2/opt/onnxifi_transformer.h>
#include <caffe2/opt/shape_info.h>
#include <caffe2/utils/string_utils.h>

#include <unordered_set>

C10_DEFINE_bool(onnxifi_debug_mode, false, "Enable onnxifi debug mode.");

C10_DEFINE_bool(
    onnxifi_adjust_batch,
    true,
    "Attach AdjustBatch ops at input/outputs of the Onnxifi ops");

C10_DEFINE_bool(
    enforce_fp32_inputs_into_fp16,
    false,
    "Whether to enforce fp32 to fp16 conversion for external inputs.");

C10_DEFINE_bool(
    merge_fp32_inputs_into_fp16,
    false,
    "Merge all the fp32 input tensors into one, convert it to fp16 and split it back");

C10_DEFINE_bool(
    verify_only_single_subnet,
    false,
    "Check that only one subnet is created during Onnxifi."
)

C10_DEFINE_int32(
    onnxifi_min_ops,
    1,
    "Minimum number of ops for a subgraph to be lowered to backend");

C10_DEFINE_int32(
    onnxifi_timeout_ms,
    0,
    "Timeout limit for onnxifi inference in milliseconds. 0 means no timeout");

C10_DEFINE_string(
    onnxifi_shape_hints,
    "",
    "Shape hints in the form of Name:d0,d1:d2;");

C10_DEFINE_string(
    onnxifi_blacklist,
    "",
    "A list of net positions whose corresponding op will be ignored "
    "to onnxifi. Example 0-50,61,62-70");

C10_DEFINE_string(
    onnxifi_blacklist_ops,
    "",
    "A list of operator types that will be ignored "
    "to onnxifi. Example Tanh,Mul");

C10_DEFINE_string(
    onnxifi_input_output_observe_list,
    "",
    "A list of net positions whose corresponding op's inputs and outputs will be"
    " observed. ");

C10_DEFINE_bool(
    use_onnxifi_batch_size,
    true,
    "If true then instead of nominal batch blob for determining current batch "
    "size we would use batch size provided as part of Glow request data.");

namespace caffe2 {
namespace glow {

// The list in the form of "0-3,5,6-7" which means, we will black list ops
// with net positions in [0,1,2,3,5,6,7]
std::unordered_set<int> ParseNetPositionList(const std::string& str) {
  std::unordered_set<int> net_position_list;
  if (str.empty()) {
    return net_position_list;
  }
  auto tokens = caffe2::split(',', str);
  for (const auto& token : tokens) {
    if (token == "-1") {
      net_position_list.emplace(-1);
      continue;
    }
    auto range = caffe2::split('-', token);
    if (range.size() == 1) {
      net_position_list.emplace(std::stoi(range[0]));
    } else if (range.size() == 2) {
      int from = std::stoi(range[0]);
      int to = std::stoi(range[1]);
      for (int i = from; i <= to; ++i) {
        net_position_list.emplace(i);
      }
    } else if (range.size() > 2) {
      LOG(WARNING) << "Ignoring illegal range: " << token;
    }
  }
  return net_position_list;
}

std::unordered_set<std::string> ParseBlockListOps(const std::string& str) {
  std::unordered_set<std::string> ops;
  if (str.empty()) {
    return ops;
  }
  auto tokens = caffe2::split(',', str);
  for (const auto& token : tokens) {
    ops.emplace(token);
  }
  return ops;
}

// Carrying out the ONNXIFI transform
void onnxifi(
    NetDef* net,
    Workspace* ws,
    const std::vector<std::string>& input_names,
    const std::vector<std::string>& output_names,
    const std::vector<std::string>& weight_names,
    const std::unordered_set<int>& blocklist,
    const ShapeInfoMap& shape_hints_max_bs,
    bool use_onnx,
    size_t max_batch_size,
    size_t max_seq_size,
    bool load_model_by_blob,
    bool predictor_net_ssa_rewritten,
    const std::unordered_map<int, ShapeInfoMap> &shape_hints_per_bs,
    const c10::optional<std::string> &blacklist_ops,
    const c10::optional<size_t> &min_ops,
    const std::unordered_set<std::string> &blocklist_blobs,
    const c10::optional<bool> &verify_only_single_subnet) {
  // Split SparseLengthsSumSparse so that we can lower the SparseLengthsSum part
  splitSparseLengthsSumSparse(net, *ws);

  // Clean up the external input/output of the net
  net->mutable_external_input()->Clear();
  net->mutable_external_output()->Clear();
  for (const auto& i : input_names) {
    net->add_external_input(i);
  }
  for (const auto& w : weight_names) {
    net->add_external_input(w);
  }
  for (const auto& o : output_names) {
    net->add_external_output(o);
  }

  // ONNXIFI transform
  OnnxifiTransformerOptions opts;
  opts.use_onnx = use_onnx;
  opts.bound_shape_spec.max_batch_size = max_batch_size;
  opts.bound_shape_spec.max_seq_size = max_seq_size;
  opts.debug = FLAGS_onnxifi_debug_mode;
  opts.adjust_batch = FLAGS_onnxifi_adjust_batch;
  opts.min_ops = min_ops.value_or(FLAGS_onnxifi_min_ops);
  opts.load_model_by_blob = load_model_by_blob;
  opts.enforce_fp32_inputs_into_fp16 = FLAGS_enforce_fp32_inputs_into_fp16;
  opts.merge_fp32_inputs_into_fp16 = FLAGS_merge_fp32_inputs_into_fp16;
  opts.verify_only_single_subnet = verify_only_single_subnet.value_or(FLAGS_verify_only_single_subnet);
  opts.predictor_net_ssa_rewritten = predictor_net_ssa_rewritten;
  opts.timeout = FLAGS_onnxifi_timeout_ms;
  opts.shape_hints_per_bs = shape_hints_per_bs;
  opts.use_onnxifi_batch_size = FLAGS_use_onnxifi_batch_size;

  ShapeInfoMap more_shape_hints = shape_hints_max_bs;
  if (!FLAGS_onnxifi_shape_hints.empty()) {
    parseShapeInfoMapFromString(FLAGS_onnxifi_shape_hints, more_shape_hints);
  }

  // Before applying backlist, make sure the ops in the net all have an net_pos;
  caffe2::BackendTransformerBase::annotateOpIndex(net);

  // Parse the blocklist
  auto more_blocklist = ParseNetPositionList(FLAGS_onnxifi_blacklist);
  for (const auto& b : blocklist) {
    more_blocklist.emplace(b);
  }

  // ONNX mode will change the op order so it doesn't apply here
  if (!opts.use_onnx) {
    auto blocklisted_ops = ParseBlockListOps(blacklist_ops.value_or(FLAGS_onnxifi_blacklist_ops));
    for (const auto& op : net->op()) {
      if (blocklisted_ops.count(op.type())) {
        ArgumentHelper helper(op);
        more_blocklist.emplace(helper.GetSingleArgument(op, kNetPos, -1));
      }
    }
  }
  // exclude blocklisted blobs, which is supposed to be loaded to NVM selectively.
  for (const auto& op : net->op()) {
    if (blocklist_blobs.count(op.input(0))) {
      ArgumentHelper helper(op);
      more_blocklist.emplace(helper.GetSingleArgument(op, kNetPos, -1));
    }
  }

  // Attach observation nodes
  //
  // When we want to observe intermediate tensors value out of the onnxifi op,
  // we use the following trick:
  //
  // 1. for specified op, we find its input and outputs.
  // 2. for each input and output, we create a new copy op and attach it as an
  // input to the copy.
  // 3. we blocklist these new copy operators from onnxification. This forces
  // these intermediate tensors to also become outputs of the onnxifi op.
  // 4. we put the right arguments on the copy ops so TensorObserver can print
  // out the values.
  auto ops_to_observe =
      ParseNetPositionList(FLAGS_onnxifi_input_output_observe_list);
  std::unordered_set<std::string> tensors_to_observe;
  for (const auto& op : ops_to_observe) {
    if (op >= net->op().size()) {
      CAFFE_THROW(
          "Cannot observe operator at position ", op, " (out of range)");
    }
    const auto& op_to_observe = net->op(op);
    tensors_to_observe.insert(
        op_to_observe.input().begin(), op_to_observe.input().end());

    if ((op_to_observe.type() == "Concat" ||
         op_to_observe.type() == "Reshape") &&
        op_to_observe.output().size() == 2) {
      tensors_to_observe.insert(op_to_observe.output(0));
    } else {
      tensors_to_observe.insert(
          op_to_observe.output().begin(), op_to_observe.output().end());
    }
  }
  for (const auto& tensor : tensors_to_observe) {
    OperatorDef copy_op;
    copy_op.set_type("Copy");
    copy_op.add_input(tensor);
    copy_op.add_output(tensor + "_copy_output_ignore");
    auto pos = net->op().size();
    AddArgument(kNetPos, pos, &copy_op);
    AddArgument("observe_input_tensors", 1, &copy_op);
    net->add_op()->CopyFrom(copy_op);
    more_blocklist.emplace(pos);
  }

  OnnxifiTransformer ts(opts);
  ts.transform(ws, net, weight_names, more_shape_hints, more_blocklist);

  // Cleanup the input from the workspace
  for (const auto& i : input_names) {
    ws->RemoveBlob(i);
  }
}

} // namespace glow
} // namespace caffe2