1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281
|
#include "graphmatcher.h"
#include "ast.h"
#include "nomnigraph/Graph/Algorithms.h"
#include <mutex>
static std::mutex mtx_;
namespace nom {
namespace nql {
using namespace nom::repr;
NNGraph::NodeRef MatchedSubgraph::operator[](const std::string& key) const {
auto search = matchMap.find(key);
CAFFE_ENFORCE(
search != matchMap.end(), "Could not find key in map of matches:", key);
return search->second;
}
TestMatchGraph::NodeRef GraphMatcher::genMatcherFromASTExpr(
ASTExpr* expr,
bool insertTemp = false) {
if (!expr->isCall()) {
if (expr->starInputs()) {
return matchGraph_.createNode(std::move(
testMatchPredicate(Criteria("*")).starCount().nonTerminal()));
}
if (!varMap_.count(expr->name)) {
varMap_[expr->name] = matchGraph_.createNode(
std::move(testMatchPredicate(Criteria("*")).nonTerminal()));
}
return varMap_[expr->name];
}
std::vector<TestMatchGraph::NodeRef> children;
for (auto child : expr->children) {
children.push_back(genMatcherFromASTExpr(child, true));
}
auto res = matchGraph_.createNode(testMatchPredicate(Criteria(expr->name)));
callMap_[expr->name] = res;
for (auto child : children) {
matchGraph_.createEdge(child, res);
}
if (insertTemp) {
auto temp = matchGraph_.createNode(testMatchPredicate(Criteria("*")));
matchGraph_.createEdge(res, temp);
res = temp;
}
return res;
}
TestMatchGraph::NodeRef GraphMatcher::genMatcherFromASTStmt(ASTStmt* stmt) {
auto right = genMatcherFromASTExpr(stmt->rhs);
auto res = right;
/* For cases like
%x, %y = Foo(%z)
for now we just say that both %x and %y are defined by node Foo, we don't
distinguish them (i.e. we don't keep any information about their order. */
for (auto v : stmt->lhs) {
res = matchGraph_.createNode(testMatchPredicate(Criteria("*")));
matchGraph_.createEdge(right, res);
varMap_[v] = res;
}
return res;
}
void deallocTokenStrings() {
for (auto p : tokens) {
delete (std::string*)p;
}
tokens.clear();
for (auto p : tokenVectors) {
delete (std::vector<void*>*)p;
}
tokenVectors.clear();
}
TestMatchGraph::NodeRef GraphMatcher::genMatcherFromASTGraph(ASTGraph* ast) {
matchGraph_ = TestMatchGraph();
// TODO: Cleanup this.
TestMatchGraph::NodeRef last = nullptr;
if (ast->stmts.empty()) {
syntaxIsValid_ = false; // Temporary solution, which works because we don't
// allow empty graphs.
}
for (auto stmt : ast->stmts) {
auto r = genMatcherFromASTStmt(stmt);
if (r) {
last = r;
}
}
return last;
}
TestMatchGraph::NodeRef GraphMatcher::genMatcherFromIRFile(const char* fname) {
std::lock_guard<std::mutex> lock(mtx_);
ASTGraph g;
parseFile(fname, &g);
matchGraphRootNode_ = genMatcherFromASTGraph(&g);
deallocTokenStrings();
return matchGraphRootNode_;
}
TestMatchGraph::NodeRef GraphMatcher::genMatcherFromIRStr(const char* str) {
std::lock_guard<std::mutex> lock(mtx_);
ASTGraph g;
parseString(str, &g);
matchGraphRootNode_ = genMatcherFromASTGraph(&g);
deallocTokenStrings();
return matchGraphRootNode_;
}
TestMatchPredicate testMatchPredicate(const Criteria& criteria) {
auto predicate =
TestMatchPredicate([criteria](nom::repr::NNGraph::NodeRef nodeRef) {
std::string nodeLabel = getNodeName(nodeRef);
return (criteria == "*" || criteria == nodeLabel);
});
predicate.setDebugString(criteria);
return predicate;
}
// Helper function for convertToNQLString function.
// Given a node and a renameMap return the unique name for this node.
static std::string getNameForBlob(
NNGraph::NodeRef node,
const std::unordered_map<NNGraph::NodeRef, std::string>& renameMap) {
if (renameMap.count(node)) {
return renameMap.at(node);
}
return getNodeName(node);
}
// Helper function for convertToNQLString function.
// Given a node and a renameMap return a string representing the node, which
// looks something like:
// %a = Op(%b, %c, %d)
static const std::string getNQLStringForBlob(
NNGraph::NodeRef node,
const std::unordered_map<NNGraph::NodeRef, std::string>& renameMap) {
if (!nn::is<Data>(node) || !nn::hasProducer(node)) {
return "";
}
NNGraph::NodeRef defOp = nn::getProducer(node);
std::string result =
getNameForBlob(node, renameMap) + " = " + getNodeName(defOp) + "(";
int i = 0;
for (auto inputTensor : nn::getInputs(defOp)) {
if (i) {
result += ", ";
}
result += getNameForBlob(inputTensor, renameMap);
i++;
}
result += ")";
return result;
}
// Helper function for convertToNQLString function.
// It takes a list of nodes and returns a map node->unique_name. The new names
// are based on the existing ones, but are also unique.
static std::unordered_map<NNGraph::NodeRef, std::string> computeDedupRenameMap(
const std::vector<NNGraph::NodeRef>& nodes) {
std::unordered_map<NNGraph::NodeRef, std::string> renameMap;
std::unordered_set<std::string> takenNames;
takenNames.clear();
for (auto node : nodes) {
std::string name = getNodeName(node);
if (!isa<Data>(node->data())) {
continue;
}
std::string newName = name;
int dedupCounter = 0;
while (takenNames.count(newName)) {
newName = name + "_" + caffe2::to_string(dedupCounter);
dedupCounter++;
}
renameMap[node] = newName;
takenNames.insert(newName);
}
return renameMap;
}
std::vector<MatchedSubgraph> GraphMatcher::getMatches(
nom::repr::NNGraph& df) const {
std::vector<MatchedSubgraph> matches;
if (!syntaxIsValid_) {
return matches;
}
// Attempt to match at each node
for (const auto& node : df.getMutableNodes()) {
auto match = matchGraph_.isSubgraphMatch(node, matchGraphRootNode_, true);
if (match.isMatch()) {
MatchedSubgraph ms;
ms.subgraph = *match.getMatchedSubgraph();
// This is a map from the the internal TestMatchGraph to the nodes in the
// NNGraph
auto match_graph_map = match.getMatchNodeMap();
// We iterate through the "varMap_" map (string ->
// TestMatchGraph::NodeRef) to generate string -> NNGraph::NodeRef
for (auto p : varMap_) {
auto iter = match_graph_map->find(p.second);
if (iter != match_graph_map->end()) {
ms.matchMap[p.first] = iter->second;
}
}
for (auto p : callMap_) {
auto iter = match_graph_map->find(p.second);
if (iter != match_graph_map->end()) {
ms.matchMap[p.first] = iter->second;
}
}
matches.emplace_back(ms);
}
}
return matches;
}
// \brief Return a short string name for the given \param node.
// The function works with both tensors and operators.
std::string getNodeName(const NNGraph::NodeRef node) {
if (!node) {
return "";
}
if (nn::is<NeuralNetOperator>(node)) {
if (auto* op = nn::get<NeuralNetOperator>(node)) {
return op->getName();
}
}
if (nn::is<NeuralNetData>(node)) {
if (auto tensor = nn::get<NeuralNetData>(node)) {
return "%" + tensor->getName();
}
}
return "";
}
// \brief Return a string representing the given graph \param g.
// The returned string is a valid NQL query.
std::string convertToNQLString(NNGraph& g) {
// Order nodes in a topological order.
// TODO: Currently tarjans mutates the graph, and that's the only reason we
// are not using const reference for `g`. We need to fix tarjans so that it
// doesn't mutate the graph and use const reference in this function too.
auto topoMatch = nom::algorithm::tarjans(&g);
std::vector<NNGraph::NodeRef> nodes;
int sccNum = 0;
for (auto scc : topoMatch) {
sccNum++;
for (auto node : scc.getNodes()) {
nodes.emplace_back(node);
}
}
std::reverse(nodes.begin(), nodes.end());
// Different nodes might have the same name. We want to change that so that
// they are distinguishable by the name. NQL assumes that names are unique.
std::unordered_map<NNGraph::NodeRef, std::string> renameMap =
computeDedupRenameMap(nodes);
// Going from top to bottom (nodes are in topological order), print all
// nodes.
std::string result = "def nn {\n";
for (auto node : nodes) {
std::string r = getNQLStringForBlob(node, renameMap);
if (!r.empty()) {
result += " " + r + "\n";
}
}
result += "}\n";
return result;
}
}; // namespace nql
}; // namespace nom
|