File: GraphMatcherTest.cc

package info (click to toggle)
pytorch 1.13.1%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 139,252 kB
  • sloc: cpp: 1,100,274; python: 706,454; ansic: 83,052; asm: 7,618; java: 3,273; sh: 2,841; javascript: 612; makefile: 323; xml: 269; ruby: 185; yacc: 144; objc: 68; lex: 44
file content (446 lines) | stat: -rw-r--r-- 12,112 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
#include "caffe2/opt/nql/graphmatcher.h"
#include <gtest/gtest.h>

using namespace nom::nql;
using namespace nom::repr;

/// \brief Create tensor-nodes in \param graph with names specified in \param
/// names and \return a name->NodeRef map.
std::unordered_map<std::string, NNGraph::NodeRef> genTensors(
    NNGraph& graph,
    std::vector<std::string> names) {
  std::unordered_map<std::string, NNGraph::NodeRef> result;
  for (auto& name : names) {
    result[name] = graph.createNode(std::make_unique<Tensor>(name));
  }
  return result;
}

TEST(Basic, MatchSingleNode) {
  NNGraph graph;
  auto reluInput = graph.createNode(std::make_unique<Tensor>("reluInput"));
  auto relu = graph.createNode(std::make_unique<Relu>());
  auto reluOutput = graph.createNode(std::make_unique<Tensor>("reluOutput"));
  graph.createEdge(reluInput, relu);
  graph.createEdge(relu, reluOutput);

  GraphMatcher gm;
  gm.initFromString(R"NQL(
    def my_nn {
      %x = Relu(%y)
    })NQL");
  EXPECT_TRUE(gm.findSubgraph(graph));

  GraphMatcher gmMismatch;
  gmMismatch.initFromString(R"NQL(
    def my_nn {
      %x = Foo(%y)
    })NQL");
  EXPECT_FALSE(gmMismatch.findSubgraph(graph));
}

TEST(Basic, SyntaxError) {
  NNGraph graph;
  auto reluInput = graph.createNode(std::make_unique<Tensor>("reluInput"));
  auto relu = graph.createNode(std::make_unique<Relu>());
  auto reluOutput = graph.createNode(std::make_unique<Tensor>("reluOutput"));
  graph.createEdge(reluInput, relu);
  graph.createEdge(relu, reluOutput);

  GraphMatcher gm;
  gm.initFromString(R"NQL(
    def my_nn {
      %x =
    })NQL");
  EXPECT_FALSE(gm.findSubgraph(graph));
}

TEST(Basic, Diamond) {
  NNGraph graph;
  /*
   The graph we're building looks like this:

       a        b
        \      /
         Concat
        /      \
       c        d
       |        |
     Relu1     Relu2
       |        |
       e        f
        \      /
          Sum
           |
           x
   */
  auto tensors = genTensors(graph, {"a", "b", "c", "d", "e", "f", "x"});
  auto relu1 = graph.createNode(std::make_unique<Relu>());
  auto relu2 = graph.createNode(std::make_unique<Relu>());
  auto concat = graph.createNode(std::make_unique<Concat>());
  auto sum = graph.createNode(std::make_unique<Sum>());

  graph.createEdge(tensors["a"], concat);
  graph.createEdge(tensors["b"], concat);
  graph.createEdge(concat, tensors["c"]);
  graph.createEdge(concat, tensors["d"]);

  graph.createEdge(tensors["c"], relu1);
  graph.createEdge(relu1, tensors["e"]);

  graph.createEdge(tensors["d"], relu2);
  graph.createEdge(relu2, tensors["f"]);

  graph.createEdge(tensors["e"], sum);
  graph.createEdge(tensors["f"], sum);
  graph.createEdge(sum, tensors["x"]);

  GraphMatcher gm1;
  gm1.initFromString(R"NQL(
    def my_nn {
      %c, %d = Concat(%a, %b)
      %e = Relu(%c)
      %f = Relu(%d)
      %x = Sum(%e, %f)
    })NQL");
  EXPECT_TRUE(gm1.findSubgraph(graph));

  // Check that syntax with inlining works too.
  GraphMatcher gm2;
  gm2.initFromString(R"NQL(
    def my_nn {
      %c, %d = Concat(%a, %b)
      %x = Sum(Relu(%c), Relu(%d))
    })NQL");
  EXPECT_TRUE(gm2.findSubgraph(graph));

  // Check that we understand that the Relu nodes should use output from the
  // same Concat node.
  GraphMatcher gm3;
  gm3.initFromString(R"NQL(
    def my_nn {
      %c = Concat(%a)
      %d = Concat(%b)
      %x = Sum(Relu(%c), Relu(%d))
    })NQL");
  EXPECT_FALSE(gm3.findSubgraph(graph));
}

TEST(Basic, BadDiamond) {
  NNGraph graph;
  /*
   The graph we're building looks like this:

       a         b
       |         |
    Concat1   Concat2
       |         |
       c         d
       |         |
     Relu1      Relu2
       |         |
       e         f
        \       /
           Sum
            |
            x
   */
  auto tensors = genTensors(graph, {"a", "b", "c", "d", "e", "f", "x"});
  auto relu1 = graph.createNode(std::make_unique<Relu>());
  auto relu2 = graph.createNode(std::make_unique<Relu>());
  auto concat1 = graph.createNode(std::make_unique<Concat>());
  auto concat2 = graph.createNode(std::make_unique<Concat>());
  auto sum = graph.createNode(std::make_unique<Sum>());

  graph.createEdge(tensors["a"], concat1);
  graph.createEdge(tensors["b"], concat2);
  graph.createEdge(concat1, tensors["c"]);
  graph.createEdge(concat2, tensors["d"]);

  graph.createEdge(tensors["c"], relu1);
  graph.createEdge(relu1, tensors["e"]);

  graph.createEdge(tensors["d"], relu2);
  graph.createEdge(relu2, tensors["f"]);

  graph.createEdge(tensors["e"], sum);
  graph.createEdge(tensors["f"], sum);
  graph.createEdge(sum, tensors["x"]);

  // Check that we don't match this graph when looking for a diamond shape.
  GraphMatcher gm;
  gm.initFromString(R"NQL(
    def my_nn {
      %c, %d = Concat(%a, %b)
      %x = Sum(Relu(%c), Relu(%d))
    })NQL");
  EXPECT_FALSE(gm.findSubgraph(graph));
  EXPECT_EQ(gm.getMatchMap().size(), 0);

  GraphMatcher gm2;
  gm2.initFromString(R"NQL(
    def my_nn {
      %c = Concat(%a)
      %d = Concat(%b)
      %x = Sum(Relu(%c), Relu(%d))
    })NQL");
  EXPECT_TRUE(gm2.findSubgraph(graph));

  auto matchMap = gm2.getMatchMap();
  EXPECT_EQ(matchMap["%a"], tensors["a"]);
  EXPECT_EQ(matchMap["%b"], tensors["b"]);
  EXPECT_EQ(matchMap["%c"], tensors["c"]);
  EXPECT_EQ(matchMap["%d"], tensors["d"]);
  EXPECT_EQ(matchMap["%x"], tensors["x"]);
  EXPECT_EQ(matchMap["Sum"], sum);
  EXPECT_TRUE(
      (matchMap["Concat"] == concat1) || (matchMap["Concat"] == concat2));
  EXPECT_TRUE((matchMap["Relu"] == relu1) || (matchMap["Relu"] == relu2));
}

TEST(Basic, StarInputs) {
  NNGraph graph;
  /*
   The graph we're building looks like this:

       a       b     c      d
       |       |     |      |
     Relu   Flatten  FC    Sum
       |       |     |      |
       e       f     g      h
        \      |     |     /
          \    |     |   /
            \  |     | /
               Concat
                 |
                 x
   */
  auto tensors =
      genTensors(graph, {"a", "b", "c", "d", "e", "f", "g", "h", "x"});
  auto concat = graph.createNode(std::make_unique<Concat>());
  auto relu = graph.createNode(std::make_unique<Relu>());
  auto flat = graph.createNode(std::make_unique<Flatten>());
  auto fc = graph.createNode(std::make_unique<FC>());
  auto sum = graph.createNode(std::make_unique<Sum>());

  graph.createEdge(tensors["a"], relu);
  graph.createEdge(relu, tensors["e"]);
  graph.createEdge(tensors["b"], flat);
  graph.createEdge(flat, tensors["f"]);
  graph.createEdge(tensors["c"], fc);
  graph.createEdge(fc, tensors["g"]);
  graph.createEdge(tensors["d"], sum);
  graph.createEdge(sum, tensors["h"]);

  graph.createEdge(tensors["e"], concat);
  graph.createEdge(tensors["f"], concat);
  graph.createEdge(tensors["g"], concat);
  graph.createEdge(tensors["h"], concat);
  graph.createEdge(concat, tensors["x"]);

  GraphMatcher gm1;
  gm1.initFromString(R"NQL(
    def my_nn {
      %e = Relu(%a)
      %f = Flatten(%b)
      %g = FC(%c)
      %h = Sum(%d)
      %x = Concat(%e, %f, %g, %h)
    })NQL");
  EXPECT_TRUE(gm1.findSubgraph(graph));
  EXPECT_EQ(gm1.getMatchMap()["Concat"], concat);
  EXPECT_EQ(gm1.getMatchMap()["Relu"], relu);
  EXPECT_EQ(gm1.getMatchMap()["Flatten"], flat);
  EXPECT_EQ(gm1.getMatchMap()["FC"], fc);
  EXPECT_EQ(gm1.getMatchMap()["Sum"], sum);
  EXPECT_EQ(gm1.getMatchMap()["%e"], tensors["e"]);
  EXPECT_EQ(gm1.getMatchMap()["%f"], tensors["f"]);
  EXPECT_EQ(gm1.getMatchMap()["%g"], tensors["g"]);
  EXPECT_EQ(gm1.getMatchMap()["%h"], tensors["h"]);

  GraphMatcher gm2;
  gm2.initFromString(R"NQL(
    def my_nn {
      %x = Concat(*)
    })NQL");
  EXPECT_TRUE(gm2.findSubgraph(graph));
  EXPECT_EQ(gm2.getMatchMap()["Concat"], concat);

  GraphMatcher gm3;
  gm3.initFromString(R"NQL(
    def my_nn {
      %e = Relu(%a)
      %x = Concat(%e, *)
    })NQL");
  EXPECT_TRUE(gm3.findSubgraph(graph));
  EXPECT_EQ(gm3.getMatchMap()["Concat"], concat);
  EXPECT_EQ(gm3.getMatchMap()["Relu"], relu);
  EXPECT_EQ(gm3.getMatchMap()["%e"], tensors["e"]);

  GraphMatcher gm4;
  gm4.initFromString(R"NQL(
    def my_nn {
      %x = Concat(Sum(%a), *)
    })NQL");
  EXPECT_FALSE(gm4.findSubgraph(graph));

  GraphMatcher gm5;
  gm5.initFromString(R"NQL(
    def my_nn {
      %x = Concat(*, Sum(%d))
    })NQL");
  // '*' greedily matches all inputs, and then we fail to match an extra Sum
  // input.
  EXPECT_FALSE(gm5.findSubgraph(graph));
}

TEST(Basic, StarOutputs) {
  NNGraph graph;
  /*
   The graph we're building looks like this:

       a    b    c
        \   |   /
         Concat
        /   |   \
       d    e    f
   */

  auto tensors = genTensors(graph, {"a", "b", "c", "d", "e", "f"});
  auto concat = graph.createNode(std::make_unique<Concat>());

  graph.createEdge(tensors["a"], concat);
  graph.createEdge(tensors["b"], concat);
  graph.createEdge(tensors["c"], concat);
  graph.createEdge(concat, tensors["d"]);
  graph.createEdge(concat, tensors["e"]);
  graph.createEdge(concat, tensors["f"]);

  GraphMatcher gm1;
  gm1.initFromString(R"NQL(
    def my_nn {
      %a, %b, %c = Concat(%d, %e, %f)
    })NQL");
  EXPECT_TRUE(gm1.findSubgraph(graph));
  EXPECT_EQ(gm1.getMatchMap()["Concat"], concat);

  GraphMatcher gm2;
  gm2.initFromString(R"NQL(
    def my_nn {
      * = Concat(*)
    })NQL");
  EXPECT_TRUE(gm2.findSubgraph(graph));
  EXPECT_EQ(gm2.getMatchMap()["Concat"], concat);

  GraphMatcher gm3;
  gm3.initFromString(R"NQL(
    def my_nn {
      %a, * = Concat(*)
    })NQL");
  EXPECT_TRUE(gm3.findSubgraph(graph));
  EXPECT_EQ(gm3.getMatchMap()["Concat"], concat);

  GraphMatcher gm4;
  gm4.initFromString(R"NQL(
    def my_nn {
      %a, %b, * = Concat(%d, %e, *)
    })NQL");
  EXPECT_TRUE(gm4.findSubgraph(graph));
  EXPECT_EQ(gm4.getMatchMap()["Concat"], concat);

  GraphMatcher gm5;
  gm5.initFromString(R"NQL(
    def my_nn {
      %a = Concat(%d, %e, *)
    })NQL");
  // We ignore mismatches in outputs
  EXPECT_TRUE(gm5.findSubgraph(graph));
  EXPECT_EQ(gm5.getMatchMap()["Concat"], concat);

  GraphMatcher gm6;
  gm6.initFromString(R"NQL(
    def my_nn {
      %a, %b, %c, %x = Concat(%d, %e, %f)
    })NQL");
  // We ignore mismatches in outputs
  EXPECT_TRUE(gm6.findSubgraph(graph));
  EXPECT_EQ(gm6.getMatchMap()["Concat"], concat);

  GraphMatcher gm7;
  gm7.initFromString(R"NQL(
    def my_nn {
      %a, %b, %c = Concat(%d, %e)
    })NQL");
  // We don't ignore mismatches in inputs
  EXPECT_FALSE(gm7.findSubgraph(graph));
}

TEST(Caffe2ToNQL, Basic) {
  NNGraph graph;
  /*
   The graph we're building looks like this:

       a
       |
    Concat
       |
       b
       |
     Relu
       |
       c
   */
  auto tensors = genTensors(graph, {"a", "b", "c"});
  auto relu = graph.createNode(std::make_unique<Relu>());
  auto concat = graph.createNode(std::make_unique<Concat>());

  graph.createEdge(tensors["a"], concat);
  graph.createEdge(concat, tensors["b"]);

  graph.createEdge(tensors["b"], relu);
  graph.createEdge(relu, tensors["c"]);

  EXPECT_EQ(convertToNQLString(graph), R"NQL(def nn {
  %b = Concat(%a)
  %c = Relu(%b)
}
)NQL");
}

TEST(Caffe2ToNQL, TensorsNameDeduplication) {
  NNGraph graph;
  /*
   The graph we're building looks like this:

       a
       |
    Concat
       |
       b
       |
     Relu
       |
       c
   */
  std::unordered_map<std::string, NNGraph::NodeRef> tensors;
  // Manually create tensors with the same names. NQL will have to disambiguate
  // the names by adding a suffix.
  tensors["a"] = graph.createNode(std::make_unique<Tensor>("tensor"));
  tensors["b"] = graph.createNode(std::make_unique<Tensor>("tensor"));
  tensors["c"] = graph.createNode(std::make_unique<Tensor>("tensor"));

  auto relu = graph.createNode(std::make_unique<Relu>());
  auto concat = graph.createNode(std::make_unique<Concat>());

  graph.createEdge(tensors["a"], concat);
  graph.createEdge(concat, tensors["b"]);

  graph.createEdge(tensors["b"], relu);
  graph.createEdge(relu, tensors["c"]);

  EXPECT_EQ(convertToNQLString(graph), R"NQL(def nn {
  %tensor_0 = Concat(%tensor)
  %tensor_1 = Relu(%tensor_0)
}
)NQL");
}