1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528
|
#pragma once
#include <unordered_map>
#include "onnx/onnx_pb.h"
#include <c10/util/Exception.h>
#include <c10/util/SmallVector.h>
#include <c10/util/irange.h>
#include "caffe2/core/context.h"
#include "caffe2/core/logging.h"
#include "caffe2/core/operator.h"
#include "caffe2/onnx/onnxifi_graph_info.h"
#include "caffe2/onnx/onnxifi_init.h"
#include "caffe2/opt/shape_info.h"
#include "caffe2/utils/proto_utils.h"
#include "caffe2/utils/string_utils.h"
namespace caffe2 {
namespace details {
/// Provides slicing info for the outputs. All the vector members should be of
/// the same size as number of outputs of the Onnxifi op.
struct OutputReshapeInfo {
std::vector<Tensor> begins;
std::vector<Tensor> ends;
std::vector<bool> fast_path;
};
struct TensorInfo {
std::vector<uint64_t> dims;
uint64_t onnxifi_type;
bool quantized;
uint32_t quantizationAxis;
uint64_t quantizationParams;
std::vector<float> scales;
std::vector<int32_t> biases;
explicit TensorInfo(const TensorProto& t);
explicit TensorInfo(const QTensorProto& t);
TensorInfo(TensorInfo&&) = default;
TensorInfo& operator=(TensorInfo&&) = default;
};
} // namespace details
template <typename Context>
class OnnxifiOp final : public Operator<Context> {
public:
USE_OPERATOR_CONTEXT_FUNCTIONS;
explicit OnnxifiOp(const OperatorDef& operator_def, Workspace* ws)
: Operator<Context>(operator_def, ws),
use_onnx_(this->template GetSingleArgument<int>("use_onnx", 0)),
use_glow_aot_(this->template GetSingleArgument<int>("use_glow_aot", 0)),
max_batch_size_(
this->template GetSingleArgument<int>("max_batch_size", 0)),
max_seq_size_(this->template GetSingleArgument<int>("max_seq_size", 0)),
timeout_(this->template GetSingleArgument<int>("timeout", 0)),
nominal_batch_idx_(
this->template GetSingleArgument<int>("nominal_batch_idx", 0)),
use_passed_output_shapes_(this->template GetSingleArgument<int>("use_passed_output_shapes", 0)),
adjust_quantized_offset_(this->template GetSingleArgument<int>(
"adjust_quantized_offset",
128)),
use_onnxifi_batch_size_(this->template GetSingleArgument<int>(
"use_onnxifi_batch_size",
0)) {
lib_ = onnx::initOnnxifiLibrary();
backend_graph_map_ptr_ = onnx::getOnnxBackendGraphMap();
CAFFE_ENFORCE(lib_, "Cannot initialize ONNXIFI library");
auto onnx_model_str =
this->template GetSingleArgument<std::string>("onnx_model", "");
CAFFE_ENFORCE(!onnx_model_str.empty(), "onnx_model cannot be empty");
if (use_glow_aot_) {
auto netdef_str =
this->template GetSingleArgument<std::string>("netdef_str", "");
CAFFE_ENFORCE(ParseProtoFromLargeString(netdef_str, &netdef_));
} else if (!use_onnx_) {
CAFFE_ENFORCE(ParseProtoFromLargeString(onnx_model_str, &netdef_));
}
// Setup input/output descriptor templates
input_names_ =
this->template GetRepeatedArgument<std::string>("input_names");
output_names_ =
this->template GetRepeatedArgument<std::string>("output_names");
CAFFE_ENFORCE_EQ(input_names_.size(), operator_def.input_size());
CAFFE_ENFORCE_EQ(output_names_.size(), operator_def.output_size());
for (const auto& input : input_names_) {
input_desc_.push_back(onnxTensorDescriptorV1());
input_desc_.back().name = input.c_str();
}
all_offsets_.reserve(ws->Blobs().size());
all_scales_.reserve(ws->Blobs().size());
input_shapes_.resize(input_names_.size());
output_shapes_max_bs_.resize(output_names_.size());
quantized_outputs_.resize(output_names_.size(), false);
int output_idx = 0;
ArgumentHelper helper(operator_def);
auto output_shape_info =
helper.GetRepeatedArgument<TensorProto>("output_shape_info");
auto output_qshape_info =
helper.GetRepeatedArgument<QTensorProto>("output_qshape_info");
std::unordered_map<std::string, TensorProto> output_shape_map;
for (const auto& info : output_shape_info) {
output_shape_map.emplace(info.name(), info);
}
std::unordered_map<std::string, QTensorProto> output_qshape_map;
for (const auto& info : output_qshape_info) {
output_qshape_map.emplace(info.name(), info);
}
bool has_quantized_output = false;
for (const auto& output : output_names_) {
output_desc_.push_back(onnxTensorDescriptorV1());
output_desc_.back().name = output.c_str();
// For output, we try to get its output size hint
const auto it = output_shape_map.find(output);
if (it != output_shape_map.end()) {
output_shape_hints_.emplace(
output_idx, details::TensorInfo(it->second));
} else {
const auto qit = output_qshape_map.find(output);
if (qit != output_qshape_map.end()) {
output_shape_hints_.emplace(
output_idx, details::TensorInfo(qit->second));
quantized_outputs_[output_idx] = true;
has_quantized_output = true;
}
}
++output_idx;
}
if (!has_quantized_output) {
adjust_quantized_offset_ = 0;
}
LOG(INFO) << "use_onnx_=" << use_onnx_
<< ", use_glow_aot_=" << use_glow_aot_
<< ", use_passed_output_shapes_=" << use_passed_output_shapes_
<< ", use_onnxifi_batch_size_=" << use_onnxifi_batch_size_;
if (use_passed_output_shapes_) {
// Populate output_shapes_per_bs_
for (const auto bs : c10::irange(1, max_batch_size_)) {
auto output_shapes_tp = helper.GetRepeatedArgument<TensorProto>("output_shapes_bs_" + caffe2::to_string(bs));
auto output_qshapes_tp = helper.GetRepeatedArgument<TensorProto>("output_qshapes_bs_" + caffe2::to_string(bs));
CAFFE_ENFORCE_EQ(output_names_.size(), output_shapes_tp.size() + output_qshapes_tp.size());
std::unordered_map<std::string, details::TensorInfo> name_to_shape;
for (const auto& output_shape_tp : output_shapes_tp) {
name_to_shape.emplace(output_shape_tp.name(), details::TensorInfo{output_shape_tp});
}
for (const auto& output_qshape_tp : output_qshapes_tp) {
name_to_shape.emplace(output_qshape_tp.name(), details::TensorInfo{output_qshape_tp});
}
for (const auto& output : output_names_) {
auto it = name_to_shape.find(output);
CAFFE_ENFORCE(it != name_to_shape.end());
output_shapes_per_bs_[bs].push_back({});
auto &output_shapes = output_shapes_per_bs_[bs].back();
std::copy(it->second.dims.cbegin(), it->second.dims.cend(), std::back_inserter(output_shapes));
}
}
}
// Get output resizing hints
adjust_output_batch_ =
this->template GetSingleArgument<int>("adjust_output_batch", 0);
// Encode arguments starting with "custom_" to backend
std::vector<uint64_t> property_pointers;
std::vector<int64_t> int_args;
std::vector<float> float_args;
buildPropertyList(operator_def, &property_pointers, &int_args, &float_args);
// Initialize the backend if it has not been already created. When we
// initialized the backend, we will get the weights (initializers) from the
// workspace and offload onto the backend. This should be done only once.
// Subsequent call of this function with the same model id should find a
// cached backend and therefore there is no need to repeat the above
// process.
buildBackendAndGraph(ws, property_pointers, onnx_model_str);
}
~OnnxifiOp() {
backend_graph_shared_ptr_.reset();
backend_graph_map_ptr_->remove(op_id_string_);
#ifdef ONNXIFI_ENABLE_EXT
traces_.reset();
#endif
}
bool RunOnDevice() override;
void setEnableTracing(bool b) {
enable_tracing_ = b;
}
#ifdef ONNXIFI_ENABLE_EXT
std::shared_ptr<onnxTraceEventList> traces() const {
return traces_;
}
#endif
private:
// Second argument is a cache vector to avoid repeated reallocation.
// The existence of this is not ideal, which is purely due to the fact that
// we use int64_t for c2::tensor dim but uint64_t for onnxDesciptor dim.
// Maybe we should just use int64_t.
void setOutputShapeAndType(
int output_idx,
c10::SmallVector<int64_t, 4>& tensor_dims_int64);
void buildPropertyList(
const OperatorDef& /* unused */,
std::vector<uint64_t>* property_list,
std::vector<int64_t>* /* unused */,
std::vector<float>* /* unused */) {
property_list->push_back(ONNXIFI_BACKEND_PROPERTY_NONE);
}
void buildBackendAndGraph(
Workspace* ws,
const std::vector<uint64_t>& property_pointers,
const std::string& onnx_model_str) {
op_id_string_ =
this->template GetSingleArgument<std::string>("model_id", "") + ":" +
this->template GetSingleArgument<std::string>("net_pos", "");
auto initializers =
this->template GetRepeatedArgument<std::string>("initializers");
// Build the Onnxifi engine
auto backend_index =
this->template GetSingleArgument<int>("backend_id", use_onnx_ ? 1 : 0);
// If using Glow AOT, override the backend_id to 1, since it uses a custom
// ONNX format, and that's the id we use for the ONNX backend.
if (use_glow_aot_) {
backend_index = 1;
}
auto creator = [this,
ws,
property_pointers,
backend_index,
&onnx_model_str,
&initializers]() {
std::vector<onnxBackendID> backend_ids;
size_t num_backends{0};
CAFFE_ENFORCE_EQ(
lib_->onnxGetBackendIDs(nullptr, &num_backends),
ONNXIFI_STATUS_FALLBACK);
CAFFE_ENFORCE_GT(
num_backends, 0, "At least 1 onnxifi backend should be available");
CAFFE_ENFORCE_LT(
backend_index,
num_backends,
"Backend idx out of bound: ",
backend_index,
", #backends: ",
num_backends);
backend_ids.resize(num_backends);
CAFFE_ENFORCE_EQ(
lib_->onnxGetBackendIDs(backend_ids.data(), &num_backends),
ONNXIFI_STATUS_SUCCESS);
onnxBackendID backend_id = backend_ids[backend_index];
onnxBackend backend{nullptr};
CAFFE_ENFORCE_EQ(
lib_->onnxInitBackend(backend_id, property_pointers.data(), &backend),
ONNXIFI_STATUS_SUCCESS);
// Release unused backend ids.
for (const auto i : c10::irange(num_backends)) {
if (i == static_cast<size_t>(backend_index)) {
continue;
}
lib_->onnxReleaseBackendID(backend_ids[i]);
}
// Get weights
std::vector<std::string> weight_names;
std::vector<std::vector<uint64_t>> weight_shapes;
auto weight_descs = buildInitializationList(
ws,
initializers,
&weight_names,
&weight_shapes,
&all_scales_,
&all_offsets_);
// Extra weight shapes
std::unordered_map<std::string, ShapeInfo> weight_shape_info;
for (const auto i : c10::irange(weight_names.size())) {
TensorShape shape;
const auto& shape0 = weight_shapes[i];
for (const auto d : shape0) {
shape.add_dims(d);
}
weight_shape_info[weight_names[i]] = ShapeInfo(
std::vector<TensorBoundShape::DimType>(
shape0.size(), TensorBoundShape_DimType_CONSTANT),
std::move(shape));
}
Blob* defered_blob_reader = nullptr;
if (ws->HasBlob("__DEFERRED_BLOB_READER__")) {
defered_blob_reader = ws->GetBlob("__DEFERRED_BLOB_READER__");
}
onnxGraph graph{nullptr};
static const uint64_t auxPropertiesListAOT[] = {
ONNXIFI_OPTIMIZATION_AOT, ONNXIFI_GRAPH_PROPERTY_NONE};
auto ret = lib_->onnxInitGraph(
backend,
use_glow_aot_ ? auxPropertiesListAOT : nullptr,
onnx_model_str.size(),
(const void*)(onnx_model_str.c_str()),
weight_descs.size(),
weight_descs.data(),
&graph,
static_cast<uint32_t>(max_seq_size_),
defered_blob_reader);
if (ret != ONNXIFI_STATUS_SUCCESS) {
if (ret == ONNXIFI_STATUS_FATAL_ERROR) {
C10_THROW_ERROR(
OnnxfiBackendSystemError, "Fatal error during onnxInitGraph");
} else {
CAFFE_THROW("onnxInitGraph failed");
}
}
return std::make_shared<onnx::BackendGraphInfo>(
backend_id, backend, graph, lib_, std::move(weight_shape_info));
};
backend_graph_shared_ptr_ =
backend_graph_map_ptr_->insert(op_id_string_, creator);
backend_id_ = backend_graph_shared_ptr_->backend_id;
backend_ = backend_graph_shared_ptr_->backend;
graph_ = backend_graph_shared_ptr_->graph;
input_shape_info_ = backend_graph_shared_ptr_->weight_shape_info;
getExtFunctionPointers();
}
/// Set up function pointer if onnxifi_ext is enabled
void getExtFunctionPointers() {
#ifdef ONNXIFI_ENABLE_EXT
union {
onnxExtensionFunctionPointer p;
decltype(onnxSetIOAndRunGraphPointer_) set;
decltype(onnxReleaseTraceEventsPointer_) release;
decltype(onnxWaitEventForPointer_) waitfor;
decltype(onnxGetCurrentBatchSizePointer_) currentbatchsize;
} u;
if (lib_->onnxGetExtensionFunctionAddress(
backend_id_, "onnxSetIOAndRunGraphFunction", &u.p) !=
ONNXIFI_STATUS_SUCCESS) {
onnxSetIOAndRunGraphPointer_ = nullptr;
} else {
onnxSetIOAndRunGraphPointer_ = u.set;
}
if (lib_->onnxGetExtensionFunctionAddress(
backend_id_, "onnxReleaseTraceEventsFunction", &u.p) !=
ONNXIFI_STATUS_SUCCESS) {
onnxReleaseTraceEventsPointer_ = nullptr;
} else {
onnxReleaseTraceEventsPointer_ = u.release;
}
if (lib_->onnxGetExtensionFunctionAddress(
backend_id_, "onnxWaitEventForFunction", &u.p) !=
ONNXIFI_STATUS_SUCCESS) {
onnxWaitEventForPointer_ = nullptr;
} else {
onnxWaitEventForPointer_ = u.waitfor;
}
if (lib_->onnxGetExtensionFunctionAddress(
backend_id_, "onnxGetCurrentBatchSizeFunction", &u.p) !=
ONNXIFI_STATUS_SUCCESS) {
onnxWaitEventForPointer_ = nullptr;
} else {
onnxGetCurrentBatchSizePointer_ = u.currentbatchsize;
}
#endif
}
/// Helper method for extractOutputBatchSizes(), used to deduplicate code of populating output reshape infos
template <typename DimContainer>
void fillOutputReshapeInfo(
const DimContainer& real_shape,
c10::ArrayRef<uint64_t> max_shape,
details::OutputReshapeInfo &output_reshape_info,
int index);
/// Helper method for updating output reshape info using provided output shape hints.
void extractOutputBatchSizes(int current_batch_size);
/// Extract output batch size. If the output batch size is going to be at
/// max_batch_size_, return true indicating that no output shape adjustment is
/// needed. Otherwise, return false.
int extractOutputBatchSizes();
/// Adjust output tensor shape based on the current input batch size.
/// If the output shape is conditioned on first dim (batch size), we have a
/// fast path to shrink the tensor shape by just manipulating the meta data.
/// Otherwise, we have to slice it in the middle of the dimension with copy
/// invoked. This is a slow path and we don't expect it to happen very often.
/// We can already omit this step by setting "adjust_output_batch_" to false
void adjustOutputBatchSizes(int current_batch_size);
std::vector<onnxTensorDescriptorV1> buildInitializationList(
Workspace* ws,
const std::vector<std::string>& initializers,
std::vector<std::string>* weight_names,
std::vector<std::vector<uint64_t>>* weight_shapes,
std::vector<std::vector<float>>* all_scales,
std::vector<std::vector<int32_t>>* all_offsets) const;
/// initialize an OutputReshapeInfo object
details::OutputReshapeInfo initOutputReshapeInfo() const;
// pointer to loaded onnxifi library
onnxifi_library* lib_{nullptr};
onnx::OnnxBackendGraphMap* backend_graph_map_ptr_;
std::string op_id_string_;
onnxBackendID backend_id_{nullptr};
onnxBackend backend_{nullptr};
onnxGraph graph_{nullptr};
onnx::SharedPtrBackendGraphInfo backend_graph_shared_ptr_;
// input/output descriptors
std::vector<onnxTensorDescriptorV1> input_desc_;
std::vector<onnxTensorDescriptorV1> output_desc_;
// Output reshape info
// It is a map keyed on batch size and the value OutputReshapeInfo for the
// batch size.
std::unordered_map<int, details::OutputReshapeInfo> output_reshape_info_;
#ifdef ONNXIFI_ENABLE_EXT
// onnxifi extension mode function pointer
onnxStatus (*onnxSetIOAndRunGraphPointer_)(
onnxGraph,
uint32_t,
const onnxTensorDescriptorV1*,
uint32_t,
const onnxTensorDescriptorV1*,
onnxMemoryFenceV1*,
onnxTraceEventList*);
onnxStatus (*onnxReleaseTraceEventsPointer_)(onnxTraceEventList*);
onnxStatus (*onnxWaitEventForPointer_)(
onnxEvent event,
uint32_t timeoutMs,
onnxEventState* eventState,
onnxStatus* eventStatus,
char* message,
size_t* messageLength);
onnxStatus (*onnxGetCurrentBatchSizePointer_)(int64_t*);
std::shared_ptr<onnxTraceEventList> traces_{nullptr};
#endif
// ONNX model or not
bool use_onnx_{false};
// Glow AOT model or not
bool use_glow_aot_{false};
// max batch size
int max_batch_size_;
// max sequence lookup size
int max_seq_size_;
// Inference timeout limits. Default 0 means no timeout.
int timeout_;
// index of the input whose first dimension represents the batch size
int nominal_batch_idx_{0};
// We bind the op input/output by position while ONNXIFI binds input/output by
// names. In addition, op input/output names can be written by, for example,
// memonger. We cache the original input/output name of ONNX object here and
// bind them by position.
std::vector<std::string> input_names_;
std::vector<std::string> output_names_;
// NetDef of the onnxifi subgraph for shape inference
NetDef netdef_;
std::vector<c10::SmallVector<uint64_t, 4>> input_shapes_;
std::vector<c10::SmallVector<uint64_t, 4>> output_shapes_max_bs_;
// Mapping of batch sizes to output shapes
std::unordered_map<int, std::vector<c10::SmallVector<uint64_t, 4>>> output_shapes_per_bs_;
// Indicate if i-th output is a quantized tensor
std::vector<bool> quantized_outputs_;
// This is for multi group quantization info
std::vector<std::vector<float>> all_scales_;
std::vector<std::vector<int32_t>> all_offsets_;
// output shape hints
std::unordered_map<int, details::TensorInfo> output_shape_hints_;
// input shape info. Used by shape inference when inputs are not at
// max_batch_size
std::unordered_map<std::string, ShapeInfo> input_shape_info_;
// Whether we should use passed output shape hints or do shape inference
const bool use_passed_output_shapes_{false};
// Whether we need to resize outputs or not
bool adjust_output_batch_{false};
// Whether we enable tracing in one run of inference
bool enable_tracing_{false};
// Adjust the quantized offset to compensate mismatch of certain backend
uint8_t adjust_quantized_offset_{0};
// Whether we should read batch size value from Onnxifi request data
const bool use_onnxifi_batch_size_{false};
};
} // namespace caffe2
|