1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469
|
#include "caffe2/opt/onnxifi_transformer.h"
#include <iostream>
#include <unordered_set>
#include "onnx/proto_utils.h"
#include "caffe2/core/context.h"
#include "caffe2/core/logging.h"
#include "caffe2/core/operator.h"
#include "caffe2/core/tensor.h"
#include "caffe2/onnx/onnx_exporter.h"
#include "caffe2/opt/backend_cutting.h"
#include "caffe2/utils/proto_utils.h"
#include "caffe2/utils/string_utils.h"
namespace caffe2 {
namespace {
const std::string kRealBatchSizeBlob = "real_batch_size";
const std::string kInitializers = "initializers";
constexpr size_t kBufferSize = 64;
// Convert ShapeInfo map to TensorShape map
std::unordered_map<std::string, TensorShape> stripShapeInfoMap(
const ShapeInfoMap& info_map) {
std::unordered_map<std::string, TensorShape> shape_map;
for (const auto& kv : info_map) {
shape_map.emplace(kv.first, kv.second.shape);
}
return shape_map;
}
std::vector<::ONNX_NAMESPACE::ValueInfoProto> convertToValueInfo(
const std::vector<std::string>& names,
const std::unordered_map<std::string, TensorShape>& shape_hints,
const std::unordered_map<std::string, ::ONNX_NAMESPACE::TypeProto>&
extra_shape_hints) {
std::vector<::ONNX_NAMESPACE::ValueInfoProto> r;
for (const auto& s : names) {
r.emplace_back();
auto& value_info = r.back();
value_info.set_name(s);
const auto it = shape_hints.find(s);
if (it == shape_hints.end()) {
const auto eit = extra_shape_hints.find(s);
if (eit == extra_shape_hints.end()) {
LOG(WARNING) << "Cannot get shape of " << s;
} else {
value_info.mutable_type()->CopyFrom(eit->second);
}
} else {
auto* tensor_type = value_info.mutable_type()->mutable_tensor_type();
tensor_type->set_elem_type(
onnx::Caffe2TypeToOnnxType(it->second.data_type()));
auto* shape = tensor_type->mutable_shape();
for (int i = 0; i < it->second.dims().size(); ++i) {
shape->add_dim()->set_dim_value(it->second.dims(i));
}
}
}
return r;
}
// Given a net, with primiary inputs and outputs defined in its
// external_inputs/outputs, and given the set of weights and extra weights
// (created during conversion to ONNX if exists), we check whether some of the
// weights are used in the net, and if so, we put it in the initialize_list and
// add it to the external_inputs too.
// \param net [in] c2 net (cutoff from a bigger net)
// \param weights_in_ws [in] all the weights in the workspace
// \param extra_weights [in] extra weights possibly generated during ONNX
// conversion \param initialization_list [out] weights that needs to be offload
// to backend \param total_inputs_vec [out] total #inputs of the net that
// doesn't have a producer
void getWeightsAndInputs(
const NetDef& net,
const std::unordered_set<std::string>& weights_in_ws,
const std::vector<std::string>& extra_weights,
std::unordered_set<std::string>* initialization_list,
std::vector<std::string>* total_inputs_vec) {
std::unordered_set<std::string> total_inputs;
// extra weights is definitely extra weights/inputs
for (const auto& extra_weight : extra_weights) {
if (total_inputs.emplace(extra_weight).second) {
total_inputs_vec->emplace_back(extra_weight);
}
initialization_list->emplace(extra_weight);
}
// Boundary inputs that should not be weights
std::unordered_set<std::string> boundary_inputs;
for (const auto& i : net.external_input()) {
boundary_inputs.emplace(i);
}
for (const auto& op : net.op()) {
for (const auto& input : op.input()) {
bool not_seen = total_inputs.emplace(input).second;
if (!not_seen) {
continue;
}
if (weights_in_ws.count(input)) {
// We add weights as inputs too
total_inputs_vec->emplace_back(input);
initialization_list->emplace(input);
VLOG(2) << "Add weights: " << input;
} else if (boundary_inputs.count(input)) {
VLOG(2) << "Adding boundary input: " << input;
total_inputs_vec->emplace_back(input);
}
}
}
}
void collectInputsAndOutputs(
const OperatorDef& op,
std::set<std::string>* inputs,
std::set<std::string>* outputs) {
for (const auto& blob : op.input()) {
inputs->emplace(blob);
}
for (const auto& blob : op.output()) {
outputs->emplace(blob);
}
}
void fetchInputsToIfOpsSubnet(NetDef* net) {
NetDef clone(*net);
clone.clear_op();
for (auto& op : net->op()) {
if (op.type() == "If" || op.type() == "AsyncIf") {
OperatorDef new_op(op);
ArgumentHelper helper(op);
std::set<std::string> subnet_inputs, subnet_outputs;
if (helper.HasSingleArgumentOfType<NetDef>("then_net")) {
auto then_net = helper.GetSingleArgument<NetDef>("then_net", NetDef());
for (const auto& nested_op : then_net.op()) {
collectInputsAndOutputs(nested_op, &subnet_inputs, &subnet_outputs);
}
}
if (helper.HasSingleArgumentOfType<NetDef>("else_net")) {
auto else_net = helper.GetSingleArgument<NetDef>("else_net", NetDef());
for (const auto& nested_op : else_net.op()) {
collectInputsAndOutputs(nested_op, &subnet_inputs, &subnet_outputs);
}
}
for (const std::string& blob : subnet_inputs) {
if (subnet_outputs.count(blob) == 0) {
new_op.add_input(blob);
}
}
clone.add_op()->CopyFrom(new_op);
} else {
clone.add_op()->CopyFrom(op);
}
}
net->Swap(&clone);
}
void fillModelInfo(::ONNX_NAMESPACE::ModelProto* model) {
model->set_ir_version(::ONNX_NAMESPACE::Version::IR_VERSION);
model->set_producer_name("caffe2");
auto* opset_id = model->add_opset_import();
opset_id->set_domain("");
opset_id->set_version(7);
}
int64_t getBlob1stDimSize(const ShapeInfo& shape_info) {
if (shape_info.shape.dims_size() == 0) {
return 0;
} else {
return shape_info.shape.dims(0);
}
}
NetDef composeResultNet(const OperatorDef& onnxifi_op) {
NetDef net_opt;
net_opt.add_op()->CopyFrom(onnxifi_op);
return net_opt;
}
void enforceFp32InputsToFp16(
const std::unordered_set<std::string>& weights,
NetDef* pred_net,
ShapeInfoMap* shape_hints) {
std::unordered_map<std::string, ShapeInfo> user_input_map;
for (const auto& i : pred_net->external_input()) {
if (weights.count(i)) {
continue;
}
auto it = shape_hints->find(i);
if (it == shape_hints->end() ||
it->second.shape.data_type() != TensorProto_DataType_FLOAT) {
continue;
}
auto& shape_info = it->second;
user_input_map[i] = shape_info;
shape_info.shape.set_data_type(TensorProto_DataType_FLOAT16);
}
if (user_input_map.empty()) {
return;
}
std::vector<OperatorDef> ops;
for (const auto& op : pred_net->op()) {
ops.emplace_back(op);
}
pred_net->clear_op();
int current_pos = ops.size();
// NOLINTNEXTLINE(cppcoreguidelines-avoid-c-arrays,modernize-avoid-c-arrays)
const char kBridgeTensorSuffix[] = "_to_float_bridge";
std::vector<OperatorDef> converts;
for (const auto& elem : user_input_map) {
const auto& name = elem.first;
const auto& shape_info = elem.second;
std::string new_name = name + kBridgeTensorSuffix;
shape_hints->emplace(new_name, shape_info);
converts.emplace_back(CreateOperatorDef(
"HalfToFloat",
"",
{name},
{new_name},
{MakeArgument<int>(kNetPos, current_pos++)}));
}
for (const auto& op : converts) {
pred_net->add_op()->CopyFrom(op);
}
for (auto& op : ops) {
for (auto& input : *op.mutable_input()) {
if (user_input_map.count(input)) {
input += kBridgeTensorSuffix;
}
}
}
for (const auto& op : ops) {
pred_net->add_op()->CopyFrom(op);
}
}
void mergeFp32InputsAndConvertToFp16(
size_t batch_size,
const std::unordered_set<std::string>& weights,
NetDef* pred_net,
ShapeInfoMap* shape_hints) {
std::unordered_map<std::string, ShapeInfo> user_input_map;
for (const auto& i : pred_net->external_input()) {
if (weights.count(i)) {
continue;
}
const auto it = shape_hints->find(i);
// Heuristic: the input has to be of float type, 2-dimensional and the first
// dimension has to be of batch size
if (it == shape_hints->end() ||
it->second.shape.data_type() != TensorProto_DataType_FLOAT) {
continue;
}
auto shape_info = it->second;
if (shape_info.shape.dims_size() != 2 ||
// NOLINTNEXTLINE(clang-diagnostic-sign-compare)
shape_info.shape.dims(0) != batch_size) {
continue;
}
shape_info.shape.set_data_type(TensorProto_DataType_FLOAT16);
user_input_map[i] = shape_info;
}
if (user_input_map.empty()) {
return;
}
std::unordered_map<std::string, std::vector<std::string>>
user_inputs_by_partition;
std::unordered_map<std::string, std::unordered_set<std::string>>
user_input_set_by_partition;
for (const auto& op : pred_net->op()) {
for (const auto& i : op.input()) {
if (user_input_map.find(i) != user_input_map.end()) {
const auto& partition = op.device_option().node_name().empty()
? "default"
: op.device_option().node_name();
if (user_input_set_by_partition[partition].find(i) ==
user_input_set_by_partition[partition].end()) {
user_inputs_by_partition[partition].emplace_back(i);
user_input_set_by_partition[partition].insert(i);
}
}
}
}
std::vector<OperatorDef> ops;
for (const auto& op : pred_net->op()) {
ops.emplace_back(op);
}
pred_net->clear_op();
int current_pos = ops.size();
for (const auto& elem : user_inputs_by_partition) {
const auto& partition = elem.first;
const auto& user_inputs = elem.second;
const auto& user_input_set = user_input_set_by_partition[partition];
OperatorDef op1;
op1.set_type("Concat");
for (const auto& i : user_inputs) {
op1.add_input(i);
}
op1.add_output(partition + "_fp32_input_concated");
op1.add_output(partition + "_fp32_input_concated_split_info");
auto shape_info = user_input_map[user_inputs.front()];
int total = 0;
for (const auto& u : user_inputs) {
total += user_input_map[u].shape.dims(1);
}
shape_info.shape.set_dims(1, total);
AddArgument("axis", 1, &op1);
AddArgument(kNetPos, current_pos++, &op1);
pred_net->add_op()->CopyFrom(op1);
// TODO: a possible optimization is to fuse the fp16 conversion into Concat
OperatorDef op2;
op2.set_type("FloatToHalf");
op2.add_input(partition + "_fp32_input_concated");
op2.add_output(partition + "_fp16_input_concated");
AddArgument("clip", 1, &op2);
AddArgument(kNetPos, current_pos++, &op2);
shape_hints->emplace(partition + "_fp16_input_concated", shape_info);
pred_net->add_op()->CopyFrom(op2);
OperatorDef op3;
op3.set_type("Split");
op3.add_input(partition + "_fp16_input_concated");
op3.mutable_device_option()->set_node_name(partition);
std::vector<OperatorDef> converts;
for (const auto& i : user_inputs) {
// NOLINTNEXTLINE(performance-inefficient-string-concatenation)
std::string new_name = partition + "_" + i + "_split_fp16";
op3.add_output(new_name);
shape_hints->emplace(new_name, user_input_map[i]);
converts.emplace_back(CreateOperatorDef(
"HalfToFloat",
"",
// NOLINTNEXTLINE(performance-inefficient-string-concatenation)
{partition + "_" + i + "_split_fp16"},
// NOLINTNEXTLINE(performance-inefficient-string-concatenation)
{partition + "_" + i + "_split"},
{MakeArgument<int>(kNetPos, current_pos++)}));
converts.back().mutable_device_option()->set_node_name(partition);
auto converted_shape = user_input_map[i];
converted_shape.shape.set_data_type(TensorProto_DataType_FLOAT);
// NOLINTNEXTLINE(performance-inefficient-string-concatenation)
shape_hints->emplace(partition + "_" + i + "_split", converted_shape);
}
AddArgument("axis", 1, &op3);
AddArgument(kNetPos, current_pos++, &op3);
auto* arg = op3.add_arg();
arg->set_name("split");
for (const auto& u : user_inputs) {
arg->add_ints(user_input_map[u].shape.dims(1));
}
pred_net->add_op()->CopyFrom(op3);
for (const auto& op : converts) {
pred_net->add_op()->CopyFrom(op);
}
for (auto& op : ops) {
if ((!op.device_option().node_name().empty() &&
op.device_option().node_name() == partition) ||
(op.device_option().node_name().empty() && partition == "default")) {
for (auto& i : *op.mutable_input()) {
if (user_input_set.count(i)) {
// NOLINTNEXTLINE(performance-inefficient-string-concatenation)
i = partition + "_" + i + "_split";
}
}
}
}
}
for (const auto& op : ops) {
pred_net->add_op()->CopyFrom(op);
}
}
} // namespace
void splitSparseLengthsSumSparse(NetDef* net, const Workspace& ws) {
const static std::unordered_map<string, string> slss = {
{"SparseLengthsSum4BitRowwiseSparse", "SparseLengthsSumFused4BitRowwise"},
{"SparseLengthsWeightedSum4BitRowwiseSparse",
"SparseLengthsWeightedSumFused4BitRowwise"},
{"SparseLengthsSum8BitRowwiseSparse", "SparseLengthsSumFused8BitRowwise"},
{"SparseLengthsWeightedSum8BitRowwiseSparse",
"SparseLengthsWeightedSumFused8BitRowwise"},
{"SparseLengthsSum2BitRowwiseSparse", "SparseLengthsSumFused2BitRowwise"},
{"SparseLengthsWeightedSum2BitRowwiseSparse",
"SparseLengthsWeightedSumFused2BitRowwise"}};
NetDef new_net;
new_net.CopyFrom(*net);
new_net.mutable_op()->Clear();
for (const auto& op : net->op()) {
const auto it = slss.find(op.type());
if (it == slss.end()) {
new_net.add_op()->CopyFrom(op);
} else {
const bool is_weighted =
(op.type().find("Weighted") != std::string::npos);
const auto& compressed_mapping = op.input(is_weighted ? 4 : 3);
const auto* b = ws.GetBlob(compressed_mapping);
bool fallback = false;
if (b && b->IsType<Tensor>()) {
const auto& t = BlobGetTensor(*b, CPU);
fallback = ((t.numel() == 1) && (t.template data<int32_t>()[0] == 0));
}
if (fallback) {
// If fallback, we just replace the original slss op with a normal sls
// op
OperatorDef new_op;
new_op.CopyFrom(op);
new_op.set_type(it->second);
new_op.mutable_input()->RemoveLast();
new_net.add_op()->CopyFrom(new_op);
} else {
// Otherwise, we replace slss with slss_lookup followed by a normal sls
OperatorDef new_op;
new_op.CopyFrom(op);
new_op.set_type("SparseLengthsSumSparseLookup");
new_op.clear_input();
const auto& indices_in = is_weighted ? op.input(2) : op.input(1);
const auto& lengths_in = is_weighted ? op.input(3) : op.input(2);
const auto& compress_mapping = is_weighted ? op.input(4) : op.input(3);
const auto& weights_in = is_weighted ? op.input(1) : "";
new_op.add_input(indices_in);
new_op.add_input(lengths_in);
new_op.add_input(compress_mapping);
const auto indices_out = indices_in + "_decomp";
const auto lengths_out = lengths_in + "_decomp";
const auto weights_out = weights_in + "_decomp";
new_op.clear_output();
new_op.add_output(indices_out);
new_op.add_output(lengths_out);
if (is_weighted) {
new_op.add_input(weights_in);
new_op.add_output(weights_out);
}
new_net.add_op()->CopyFrom(new_op);
new_op.CopyFrom(op);
new_op.set_type(it->second);
new_op.mutable_input()->RemoveLast();
*new_op.mutable_input()->Mutable(is_weighted ? 2 : 1) = indices_out;
*new_op.mutable_input()->Mutable(is_weighted ? 3 : 2) = lengths_out;
if (is_weighted) {
*new_op.mutable_input()->Mutable(1) = weights_out;
}
new_net.add_op()->CopyFrom(new_op);
}
}
}
new_net.Swap(net);
}
OnnxifiOptionHelper::OnnxifiOptionHelper() {
lib_ = onnx::initOnnxifiLibrary();
CAFFE_ENFORCE(lib_, "Cannot initialize ONNXIFI library");
}
bool OnnxifiOptionHelper::setOnnxifiOption(
const std::string& option,
const std::string& value) {
#ifdef ONNXIFI_ENABLE_EXT
onnxStatus (*onnxSetOptionFunctionPointer)(
const char* optionName, const char* optionValue) = nullptr;
union {
onnxExtensionFunctionPointer p;
decltype(onnxSetOptionFunctionPointer) set;
} u{};
onnxBackendID backend_id = nullptr;
if (lib_->onnxGetExtensionFunctionAddress(
backend_id, "onnxSetOptionFunction", &u.p) !=
ONNXIFI_STATUS_SUCCESS) {
LOG(ERROR) << "Cannot find onnxSetOptionFunction";
return false;
} else {
onnxSetOptionFunctionPointer = u.set;
}
if (onnxSetOptionFunctionPointer != nullptr &&
(*onnxSetOptionFunctionPointer)(option.c_str(), value.c_str()) ==
ONNXIFI_STATUS_SUCCESS) {
return true;
}
#endif
return false;
}
std::string OnnxifiOptionHelper::getOnnxifiOption(const std::string& option) {
#ifdef ONNXIFI_ENABLE_EXT
onnxStatus (*onnxGetOptionFunctionPointer)(
const char* optionName, char* optionValue, size_t* optionValueLength) =
nullptr;
union {
onnxExtensionFunctionPointer p;
decltype(onnxGetOptionFunctionPointer) get;
} u{};
onnxBackendID backend_id = nullptr;
if (lib_->onnxGetExtensionFunctionAddress(
backend_id, "onnxGetOptionFunction", &u.p) !=
ONNXIFI_STATUS_SUCCESS) {
LOG(ERROR) << "Cannot find onnxGetOptionFunction";
return "";
} else {
onnxGetOptionFunctionPointer = u.get;
}
constexpr size_t ll = 1024;
// NOLINTNEXTLINE(cppcoreguidelines-avoid-c-arrays,modernize-avoid-c-arrays)
char buf[ll];
size_t len = ll;
if (onnxGetOptionFunctionPointer != nullptr &&
(*onnxGetOptionFunctionPointer)(option.c_str(), buf, &len) ==
ONNXIFI_STATUS_SUCCESS) {
return std::string(buf, len);
}
#endif
return "";
}
// NOLINTNEXTLINE(modernize-pass-by-value)
OnnxifiTransformer::OnnxifiTransformer(const OnnxifiTransformerOptions& opts)
: BackendTransformerBase(), opts_(opts) {
lib_ = onnx::initOnnxifiLibrary();
CAFFE_ENFORCE(lib_, "Cannot initialize ONNXIFI library");
CAFFE_ENFORCE_EQ(
lib_->onnxGetBackendIDs(nullptr, &num_backends_),
ONNXIFI_STATUS_FALLBACK);
CAFFE_ENFORCE_GT(
num_backends_, 0, "At least 1 onnxifi backend should be available");
backend_ids_.resize(num_backends_);
CAFFE_ENFORCE_EQ(
lib_->onnxGetBackendIDs(backend_ids_.data(), &num_backends_),
ONNXIFI_STATUS_SUCCESS);
}
OnnxifiTransformer::~OnnxifiTransformer() {
for (unsigned i = 0; i < num_backends_; ++i) {
if (lib_->onnxReleaseBackendID(backend_ids_[i]) != ONNXIFI_STATUS_SUCCESS) {
LOG(ERROR) << "Error when calling onnxReleaseBackendID";
}
}
}
bool OnnxifiTransformer::canPassOutputShapeHintsPerBs(
const OperatorDef& op,
const std::unordered_map<int, ShapeInfoMap>& shape_hints_per_bs) const {
if (shape_hints_per_bs.empty()) {
return false;
}
for (int bs = 1; bs < opts_.bound_shape_spec.max_batch_size; ++bs) {
auto shape_hints_search = shape_hints_per_bs.find(bs);
if (shape_hints_search == shape_hints_per_bs.end()) {
return false;
}
const auto& shape_hints = shape_hints_search->second;
for (int output_idx = 0; output_idx < op.output_size(); ++output_idx) {
auto shape_hint_search = shape_hints.find(op.output(output_idx));
if (shape_hint_search == shape_hints.end()) {
return false;
}
}
}
return true;
}
OperatorDef OnnxifiTransformer::buildOnnxifiOp(
const std::string& onnx_model_str,
const std::unordered_set<std::string>& initialization_list,
const std::vector<std::string>& external_inputs,
const std::vector<std::string>& external_outputs,
const ShapeInfoMap& shape_hints_max_bs,
const std::unordered_map<int, ShapeInfoMap>& shape_hints_per_bs) {
OperatorDef op;
op.set_type("Onnxifi");
auto* onnx_model_arg = op.add_arg();
onnx_model_arg->set_name("onnx_model");
onnx_model_arg->set_s(onnx_model_str);
// Add the names of the initializer blobs that we want to fetch from the
// workspace later
auto* initializers_arg = op.add_arg();
initializers_arg->set_name(kInitializers);
for (const auto& s : initialization_list) {
initializers_arg->add_strings(s);
}
// Add the input/output
int idx = 0;
auto* input_names = op.add_arg();
input_names->set_name("input_names");
for (const auto& input : external_inputs) {
if (!initialization_list.count(input)) {
op.add_input(input);
input_names->add_strings(input);
}
}
auto* output_names = op.add_arg();
output_names->set_name("output_names");
for (const auto& output : external_outputs) {
op.add_output(output);
output_names->add_strings(output);
}
// Find out the index of input that has a nominal batch size
const auto max_batch_size = opts_.bound_shape_spec.max_batch_size;
idx = 0;
int nominal_batch_idx{0};
for (const auto& input : external_inputs) {
if (!initialization_list.count(input)) {
const auto it = shape_hints_max_bs.find(input);
CAFFE_ENFORCE(
it != shape_hints_max_bs.end(),
"Input shape for ",
input,
" not found");
const auto& info = it->second;
if (info.getDimType(0) == TensorBoundShape_DimType_BATCH &&
getBlob1stDimSize(info) == max_batch_size) {
nominal_batch_idx = idx;
break;
}
++idx;
}
}
// Add output size hints for max batch size
auto* output_shape_info_arg = op.add_arg();
output_shape_info_arg->set_name("output_shape_info");
auto* output_qshape_info_arg = op.add_arg();
output_qshape_info_arg->set_name("output_qshape_info");
for (int i = 0; i < op.output_size(); ++i) {
const auto& o = op.output(i);
const auto it = shape_hints_max_bs.find(o);
if (it != shape_hints_max_bs.end()) {
if (!it->second.is_quantized) {
output_shape_info_arg->mutable_tensors()->Add()->CopyFrom(
wrapShapeInfoIntoTensorProto(o, it->second));
} else {
output_qshape_info_arg->mutable_qtensors()->Add()->CopyFrom(
wrapShapeInfoIntoQTensorProto(o, it->second));
}
VLOG(2) << "Adding output hint: " << o;
}
}
// Add output size hints per batch size
if (canPassOutputShapeHintsPerBs(op, shape_hints_per_bs)) {
VLOG(2) << "Passing in output shape hints for batch sizes in [1, "
<< opts_.bound_shape_spec.max_batch_size << ")";
AddArgument("use_passed_output_shapes", 1, &op);
for (int bs = 1; bs < opts_.bound_shape_spec.max_batch_size; ++bs) {
auto* output_shape_arg = op.add_arg();
output_shape_arg->set_name("output_shapes_bs_" + caffe2::to_string(bs));
auto* output_qshape_arg = op.add_arg();
output_qshape_arg->set_name("output_qshapes_bs_" + caffe2::to_string(bs));
const auto& shape_hints = shape_hints_per_bs.find(bs)->second;
for (int output_idx = 0; output_idx < op.output_size(); ++output_idx) {
const auto& output_name = op.output(output_idx);
const auto& shape_hint = shape_hints.find(output_name)->second;
if (!shape_hint.is_quantized) {
output_shape_arg->mutable_tensors()->Add()->CopyFrom(
wrapShapeInfoIntoTensorProto(output_name, shape_hint));
} else {
output_shape_arg->mutable_qtensors()->Add()->CopyFrom(
wrapShapeInfoIntoQTensorProto(output_name, shape_hint));
}
}
}
} else {
AddArgument("use_passed_output_shapes", 0, &op);
}
// Tell Onnxifi op that the model is in onnx or c2 proto format
AddArgument("use_onnx", opts_.use_onnx ? 1 : 0, &op);
// Tell Onnxifi op which backend id to use
AddArgument("backend_id", idx_, &op);
// Add model_id and net_pos to the onnxifi model
AddArgument(kModelId, model_id_, &op);
AddArgument(kNetPos, c10::to_string(onnxifi_op_id_++), &op);
// Add output resizing hints
if (opts_.adjust_batch) {
AddArgument("adjust_output_batch", 1, &op);
} else {
AddArgument("adjust_output_batch", 0, &op);
}
AddArgument("max_batch_size", opts_.bound_shape_spec.max_batch_size, &op);
AddArgument("max_seq_size", opts_.bound_shape_spec.max_seq_size, &op);
AddArgument("timeout", opts_.timeout, &op);
AddArgument("nominal_batch_idx", nominal_batch_idx, &op);
AddArgument("use_onnxifi_batch_size", opts_.use_onnxifi_batch_size, &op);
return op;
}
NetDef OnnxifiTransformer::SubnetToOnnxifiOpViaC2(
const caffe2::NetDef& net,
const std::unordered_set<std::string>& weights_in_ws,
const ShapeInfoMap& shape_hints_max_bs,
const std::unordered_map<int, ShapeInfoMap>& shape_hints_per_bs) {
int onnxifi_op_id = onnxifi_op_id_;
if (opts_.debug) {
WriteProtoToTextFile(
net,
"debug_original_net_" + c10::to_string(onnxifi_op_id) + ".pb_txt",
false);
}
// NOLINTNEXTLINE(clang-diagnostic-sign-compare)
if (opts_.min_ops > net.op_size()) {
return net;
}
// We already have all the ops and external inputs and outputs!
NetDef onnxifi_net(net);
// Remove the second output of Concat/Reshape from external_output. Remove
// rest of the outputs of LayerNorm too. In addition, we remove those outputs
// from the Onnxifi op too.
// TODO: This approach is a bit hacky as we assume that the second output is
// never used. A more appropriate approach can be learned from the ONNX path,
// where we statically computes the split_info given input shape and insert a
// GivenTensorIntFill op
std::unordered_set<std::string> split_infos;
for (auto& op : *onnxifi_net.mutable_op()) {
if ((op.type() == "Concat" || op.type() == "Reshape") &&
op.output_size() == 2) {
split_infos.emplace(op.output(1));
} else if (
op.type() == "SparseLengthsSum" ||
op.type() == "SparseLengthsSumFused8BitRowwise" ||
op.type() == "SparseLengthsWeightedSum" ||
op.type() == "SparseLengthsWeightedSumFused8BitRowwise" ||
op.type() == "SparseLengthsSumFused4BitRowwise" ||
op.type() == "SparseLengthsWeightedSumFused4BitRowwise") {
int weighted = (op.type() == "SparseLengthsWeightedSum" ||
op.type() == "SparseLengthsWeightedSumFused8BitRowwise" ||
op.type() == "SparseLengthsWeightedSumFused4BitRowwise")
? 1
: 0;
const auto& indices_hint = shape_hints_max_bs.at(op.input(1 + weighted));
const auto& lengths_hint = shape_hints_max_bs.at(op.input(2 + weighted));
const auto& indices_shape = indices_hint.shape;
const auto& lengths_shape = lengths_hint.shape;
if ((indices_hint.getDimType(0) ==
TensorBoundShape_DimType_BATCH_OF_FEATURE_MAX ||
indices_hint.getDimType(0) ==
TensorBoundShape_DimType_BATCH_OF_FEATURE_MAX_DEFAULT) &&
indices_shape.dims_size() == 1 && lengths_shape.dims_size() == 1 &&
indices_shape.dims(0) == lengths_shape.dims(0)) {
op.add_arg()->CopyFrom(MakeArgument<int>("length1", 1));
}
} else if (op.type() == "LayerNorm" && op.output_size() > 1) {
for (int i = 1; i < op.output_size(); ++i) {
split_infos.emplace(op.output(i));
}
}
}
onnxifi_net.clear_external_output();
for (const auto& o : net.external_output()) {
if (!split_infos.count(o)) {
onnxifi_net.add_external_output(o);
}
}
// Figure out weights and add it to external_inputs too
std::unordered_set<std::string> initialization_list;
std::vector<std::string> total_inputs_vec;
getWeightsAndInputs(
net,
weights_in_ws,
std::vector<std::string>(),
&initialization_list,
&total_inputs_vec);
auto* shape_arg = onnxifi_net.add_arg();
auto* qshape_arg = onnxifi_net.add_arg();
shape_arg->set_name("input_shape_info");
qshape_arg->set_name("input_qshape_info");
std::sort(total_inputs_vec.begin(), total_inputs_vec.end());
onnxifi_net.clear_external_input();
for (const auto& i : total_inputs_vec) {
onnxifi_net.add_external_input(i);
auto info = shape_hints_max_bs.at(i);
if (!info.is_quantized) {
shape_arg->mutable_tensors()->Add()->CopyFrom(
wrapShapeInfoIntoTensorProto(i, shape_hints_max_bs.at(i)));
} else {
qshape_arg->mutable_qtensors()->Add()->CopyFrom(
wrapShapeInfoIntoQTensorProto(i, shape_hints_max_bs.at(i)));
}
}
// Add partition info
for (const auto& p : partition_infos_) {
onnxifi_net.add_partition_info()->CopyFrom(p);
}
// Add initializers (weights) list to the net as an arg
auto* w_arg = onnxifi_net.add_arg();
w_arg->set_name(kInitializers);
for (const auto& i : initialization_list) {
w_arg->add_strings(i);
}
// Build ONNXIFI Op
std::string model_str;
onnxifi_net.SerializeToString(&model_str);
std::vector<std::string> onnxifi_net_inputs(
onnxifi_net.external_input().begin(), onnxifi_net.external_input().end());
std::vector<std::string> onnxifi_net_outputs(
onnxifi_net.external_output().begin(),
onnxifi_net.external_output().end());
auto onnxifi_op = buildOnnxifiOp(
model_str,
initialization_list,
onnxifi_net_inputs,
onnxifi_net_outputs,
shape_hints_max_bs,
shape_hints_per_bs);
NetDef net_opt = composeResultNet(onnxifi_op);
// Debugging stuff
if (opts_.debug) {
WriteProtoToTextFile(
onnxifi_net,
"debug_onnxifi_net_" + c10::to_string(onnxifi_op_id) + ".pb_txt",
false);
WriteProtoToTextFile(
net_opt,
"debug_optimized_net_" + c10::to_string(onnxifi_op_id) + ".pb_txt",
false);
}
return net_opt;
}
NetDef OnnxifiTransformer::SubnetToOnnxifiOpViaOnnx(
const caffe2::NetDef& net,
const std::unordered_set<std::string>& weights_in_ws,
Workspace* ws,
onnx::OnnxExporter* exporter,
ShapeInfoMap* shape_hints_max_bs,
const std::unordered_map<int, ShapeInfoMap>& shape_hints_per_bs) {
// NOLINTNEXTLINE(clang-diagnostic-sign-compare)
if (opts_.min_ops > net.op_size()) {
return net;
}
::ONNX_NAMESPACE::ModelProto onnx_model;
fillModelInfo(&onnx_model);
// NOLINTNEXTLINE(performance-unnecessary-copy-initialization)
caffe2::NetDef onnxifi_net(net);
// Convert c2 ops to onnx ops, add const weights if there are any
DeviceOption option;
CPUContext context(option);
context.SwitchToDevice();
std::vector<std::string> extra_weights;
for (const auto& op : onnxifi_net.op()) {
const auto results = exporter->Caffe2OpToOnnxNodes(op, shape_hints_onnx_);
for (const auto& n : results.first) {
onnx_model.mutable_graph()->add_node()->CopyFrom(n);
}
for (const auto& t : results.second) {
VLOG(2) << "Adding extra init tensor: " << t.name();
TensorShape shape;
shape.mutable_dims()->CopyFrom(t.dims());
auto ret = shape_hints_onnx_.emplace(t.name(), std::move(shape));
shape_hints_max_bs->emplace(
std::piecewise_construct,
std::forward_as_tuple(ret.first->first),
std::forward_as_tuple(
std::vector<TensorBoundShape::DimType>(
// NOLINTNEXTLINE(bugprone-use-after-move)
shape.dims_size(), TensorBoundShape_DimType_CONSTANT),
ret.first->second));
// Feed into workspace as CPU Tensors
auto* blob = ws->CreateBlob(t.name());
auto* cpu_tensor = BlobGetMutableTensor(blob, CPU);
std::vector<int64_t> dims;
for (const auto& d : t.dims()) {
dims.push_back(d);
}
cpu_tensor->Resize(dims);
if (t.data_type() == ::ONNX_NAMESPACE::TensorProto::FLOAT) {
context.CopyBytesSameDevice(
cpu_tensor->numel() * sizeof(float),
static_cast<const void*>(t.raw_data().data()),
cpu_tensor->raw_mutable_data(TypeMeta::Make<float>()));
} else if (t.data_type() == ::ONNX_NAMESPACE::TensorProto::INT64) {
context.CopyBytesSameDevice(
cpu_tensor->numel() * sizeof(int64_t),
static_cast<const void*>(t.raw_data().data()),
cpu_tensor->raw_mutable_data(TypeMeta::Make<int64_t>()));
} else {
CAFFE_THROW(
"Unsupported tensor data type for conversion: ", t.data_type());
}
context.FinishDeviceComputation();
// Add mappings
extra_weights.emplace_back(t.name());
}
}
// Convert outputs and compute output shape hints
std::vector<std::string> onnxifi_net_outputs;
for (const auto& o : net.external_output()) {
onnxifi_net_outputs.emplace_back(o);
}
auto io_vec = convertToValueInfo(
onnxifi_net_outputs,
shape_hints_onnx_,
std::unordered_map<std::string, ::ONNX_NAMESPACE::TypeProto>());
for (const auto& i : io_vec) {
onnx_model.mutable_graph()->add_output()->CopyFrom(i);
}
// Convert inputs and figure out weights
std::unordered_set<std::string> initialization_list;
std::vector<std::string> onnxifi_net_inputs;
getWeightsAndInputs(
net,
weights_in_ws,
extra_weights,
&initialization_list,
&onnxifi_net_inputs);
io_vec = convertToValueInfo(
onnxifi_net_inputs,
shape_hints_onnx_,
std::unordered_map<std::string, ::ONNX_NAMESPACE::TypeProto>());
for (const auto& i : io_vec) {
onnx_model.mutable_graph()->add_input()->CopyFrom(i);
}
// Onnx model is ready. Build ONNXIFI Op
std::string model_str;
onnx_model.SerializeToString(&model_str);
auto onnxifi_op = buildOnnxifiOp(
model_str,
initialization_list,
onnxifi_net_inputs,
onnxifi_net_outputs,
*shape_hints_max_bs,
shape_hints_per_bs);
NetDef net_opt = composeResultNet(onnxifi_op);
// Debugging stuff
if (opts_.debug) {
WriteProtoToTextFile(onnx_model, "debug_onnxifi_net.onnx_txt", false);
WriteProtoToTextFile(net_opt, "debug_optimized_net.pb_txt", false);
}
return net_opt;
}
bool OnnxifiTransformer::supportOpOnnx(
const caffe2::OperatorDef& op,
onnx::OnnxExporter* exporter,
const std::unordered_set<int>& blocklisted_ops,
onnxBackendID backend_id) const {
try {
int pos =
ArgumentHelper::GetSingleArgument<OperatorDef, int>(op, kNetPos, -1);
if (blocklisted_ops.count(pos)) {
LOG(INFO) << "Skipping blocklisted op " << op.type() << " at pos " << pos;
return false;
}
const OpSchema* schema = OpSchemaRegistry::Schema(op.type());
// NB: this might not be a hard constraint as we can just export C2
// domain specific ops to ONNX
if (!schema || schema->onnx_schema().empty()) {
LOG(INFO) << "Cannot export c2 op " << op.type()
<< " to onnx as there is no corresponding ONNX schema.";
return false;
}
::ONNX_NAMESPACE::ModelProto onnx_model;
fillModelInfo(&onnx_model);
auto results = exporter->Caffe2OpToOnnxNodes(op, shape_hints_onnx_);
std::unordered_set<std::string> used_inputs;
std::unordered_set<std::string> used_outputs;
std::vector<std::string> boundary_inputs;
std::vector<std::string> boundary_outputs;
std::unordered_set<std::string> reshape_info;
// nodes are in topological order, so we just need to iterate
for (const auto& n : results.first) {
onnx_model.mutable_graph()->add_node()->CopyFrom(n);
for (const auto& i : n.input()) {
bool is_new = used_inputs.emplace(i).second;
// The input is not seen and it's not referred by any nodes before as
// output, we count it as an boundary input
if (is_new && !used_outputs.count(i)) {
boundary_inputs.emplace_back(i);
}
}
for (const auto& o : n.output()) {
used_outputs.emplace(o);
}
// For reshape node, if it has more than 1 inputs, we need to feed the
// second input which contains the shape info
if (n.op_type() == "Reshape" && n.input_size() > 1) {
reshape_info.emplace(n.input(1));
}
}
// Second iteration to account all the boundary outputs, which is a newly
// seen output and is not referred as input before
used_outputs.clear();
for (const auto& n : results.first) {
for (const auto& o : n.output()) {
bool is_new = used_outputs.emplace(o).second;
if (is_new && !used_inputs.count(o)) {
boundary_outputs.emplace_back(o);
}
}
}
std::unordered_map<std::string, ::ONNX_NAMESPACE::TypeProto>
extra_shape_hints;
for (const auto& t : results.second) {
extra_shape_hints.emplace(t.name(), onnx::ExtraTypeProto(t));
if (reshape_info.count(t.name())) {
onnx_model.mutable_graph()->add_initializer()->CopyFrom(t);
}
}
// Add input/output shape info
auto io_vec = convertToValueInfo(
boundary_inputs, shape_hints_onnx_, extra_shape_hints);
for (const auto& i : io_vec) {
onnx_model.mutable_graph()->add_input()->CopyFrom(i);
}
io_vec = convertToValueInfo(
boundary_outputs, shape_hints_onnx_, extra_shape_hints);
for (const auto& i : io_vec) {
onnx_model.mutable_graph()->add_output()->CopyFrom(i);
}
std::string onnx_model_str;
onnx_model.SerializeToString(&onnx_model_str);
auto ret = lib_->onnxGetBackendCompatibility(
backend_id, onnx_model_str.size(), onnx_model_str.c_str());
if (ret != ONNXIFI_STATUS_SUCCESS) {
LOG(INFO) << "Don't support onnx for " << op.type() << " c2 op (" << ret
<< ")";
return false;
} else {
return true;
}
} catch (const std::exception& ex) {
LOG(ERROR) << "Caught exception when converting op " << op.type()
<< ", what: " << ex.what();
return false;
}
}
bool OnnxifiTransformer::supportOpC2(
const caffe2::OperatorDef& op,
const ShapeInfoMap& shape_hints,
const std::unordered_set<std::string>& weights,
const std::unordered_set<int>& blocklisted_ops,
onnxBackendID backend_id) const {
try {
int pos =
ArgumentHelper::GetSingleArgument<OperatorDef, int>(op, kNetPos, -1);
if (blocklisted_ops.count(pos)) {
LOG(INFO) << "Skipping blocklisted op " << op.type() << " at pos " << pos;
return false;
}
// Build a c2 net with one op
NetDef net;
net.add_op()->CopyFrom(op);
std::unordered_set<std::string> seenExternalInputs;
for (const auto& i : op.input()) {
if (seenExternalInputs.count(i)) {
continue;
}
seenExternalInputs.insert(i);
net.add_external_input(i);
}
for (const auto& o : op.output()) {
net.add_external_output(o);
}
// Remove the second output of Concat/Reshape from the external_output
if ((op.type() == "Concat" || op.type() == "Reshape") &&
op.output_size() == 2) {
net.mutable_external_output()->RemoveLast();
} else if (op.type() == "LayerNorm" && op.output_size() > 1) {
int remove = op.output_size() - 1;
for (int i = 0; i < remove; ++i) {
net.mutable_external_output()->RemoveLast();
}
}
// Encode the input/output shapes to an argument
auto* shape_arg = net.add_arg();
auto* qshape_arg = net.add_arg();
shape_arg->set_name("input_shape_info");
qshape_arg->set_name("input_qshape_info");
std::unordered_set<std::string> seenInputsForShapeArgs;
for (const auto& i : op.input()) {
if (seenInputsForShapeArgs.count(i)) {
continue;
}
seenInputsForShapeArgs.insert(i);
const auto it = shape_hints.find(i);
if (it == shape_hints.end()) {
VLOG(1) << "Skipping " << op.type() << " (" << pos
<< ") due to missing shape info for input " << i;
return false;
}
if ((it->second).is_quantized == false) {
shape_arg->mutable_tensors()->Add()->CopyFrom(
wrapShapeInfoIntoTensorProto(i, it->second));
} else {
qshape_arg->mutable_qtensors()->Add()->CopyFrom(
wrapShapeInfoIntoQTensorProto(i, it->second));
}
}
qshape_arg = net.add_arg();
shape_arg = net.add_arg();
shape_arg->set_name("output_shape_info");
qshape_arg->set_name("output_qshape_info");
for (const auto& i : op.output()) {
const auto it = shape_hints.find(i);
if (it == shape_hints.end()) {
VLOG(1) << "Skipping " << op.type() << " (" << pos
<< ") due to missing shape info for output " << i;
return false;
}
if ((it->second).is_quantized == false) {
shape_arg->mutable_tensors()->Add()->CopyFrom(
wrapShapeInfoIntoTensorProto(i, it->second));
} else {
qshape_arg->mutable_qtensors()->Add()->CopyFrom(
wrapShapeInfoIntoQTensorProto(i, it->second));
}
}
// Annnote the inputs that are weights
auto w_arg = net.add_arg();
w_arg->set_name(kInitializers);
for (const auto& i : op.input()) {
if (weights.count(i)) {
w_arg->add_strings(i);
}
}
std::string c2_model_str;
net.SerializeToString(&c2_model_str);
auto ret = lib_->onnxGetBackendCompatibility(
backend_id, c2_model_str.size(), c2_model_str.c_str());
if (ret != ONNXIFI_STATUS_SUCCESS) {
LOG(INFO) << "Don't support c2 op " << op.type() << " at pos " << pos
<< " (" << ret << ")";
return false;
} else {
return true;
}
} catch (const std::exception& ex) {
LOG(ERROR) << "Caught exception when converting op " << op.type()
<< ", what: " << ex.what();
return false;
}
}
void OnnxifiTransformer::tieGatherAndSparseLengthsWeightedSumOps(
const NetDef& net,
const ShapeInfoMap& shape_hints,
const std::unordered_set<std::string>& weights,
std::unordered_set<int>* blocklisted_ops) const {
std::unordered_map<std::string, int> output_pos;
onnx::OnnxExporter exporter(nullptr);
onnxBackendID backend_id = backend_ids_[idx_];
for (const auto& op : net.op()) {
std::string check;
if (op.type() == "Gather") {
int pos =
ArgumentHelper::GetSingleArgument<OperatorDef, int>(op, kNetPos, -1);
for (const auto& output : op.output()) {
output_pos.emplace(output, pos);
}
} else if (StartsWith(op.type(), "SparseLengthsWeighted")) {
auto supported = opts_.use_onnx
? supportOpOnnx(op, &exporter, *blocklisted_ops, backend_id)
: supportOpC2(op, shape_hints, weights, *blocklisted_ops, backend_id);
if (!supported && op.input_size() > 1) {
check = op.input(1);
}
} else if (
op.type() == "SparseLengthsSumSparseLookup" && op.input_size() > 3) {
check = op.input(3);
}
if (!check.empty()) {
const auto it = output_pos.find(check);
if (it == output_pos.end()) {
continue;
}
blocklisted_ops->emplace(it->second);
// We know that current op is not going to be supported. Might as well
// blocklist it too
blocklisted_ops->emplace(
ArgumentHelper::GetSingleArgument<OperatorDef, int>(op, kNetPos, -1));
}
}
}
void OnnxifiTransformer::blocklistCpuPartition(
const NetDef& net,
std::unordered_set<int>* blocklisted_ops) const {
std::unordered_set<std::string> cpu_partitions;
for (const auto& p : partition_infos_) {
if (p.device_id_size() == 0) {
cpu_partitions.emplace(p.name());
}
}
for (const auto& op : net.op()) {
const auto& pname = op.device_option().node_name();
if (cpu_partitions.count(pname)) {
blocklisted_ops->emplace(
ArgumentHelper::GetSingleArgument<OperatorDef, int>(op, kNetPos, -1));
}
}
}
void OnnxifiTransformer::applyFilteringRules(
const NetDef& net,
const ShapeInfoMap& shape_hints,
const std::unordered_set<std::string>& weights,
std::unordered_set<int>* blocklisted_ops) const {
tieGatherAndSparseLengthsWeightedSumOps(
net, shape_hints, weights, blocklisted_ops);
blocklistCpuPartition(net, blocklisted_ops);
}
std::vector<onnxBackendID> OnnxifiTransformer::getBackendId() {
idx_ = 0;
if (opts_.use_onnx) {
return backend_ids_;
}
// Try to find a backend that support Caffe2 proto. Note that this is quite
// opportunistic as we don't officially support Caffe2 proto.
// NOLINTNEXTLINE(cppcoreguidelines-avoid-c-arrays,modernize-avoid-c-arrays)
char buf[kBufferSize];
// NOLINTNEXTLINE(clang-diagnostic-sign-compare)
for (int i = 0; i < backend_ids_.size(); ++i) {
size_t len = kBufferSize;
auto ret = lib_->onnxGetBackendInfo(
backend_ids_[i], ONNXIFI_BACKEND_DEVICE, buf, &len);
if (ret == ONNXIFI_STATUS_SUCCESS && strstr(buf, "Caffe2")) {
LOG(INFO) << "Using backend with Caffe2 Proto, ID: " << i;
idx_ = i;
break;
}
}
return backend_ids_;
}
opt::CutResult OnnxifiTransformer::TransformViaC2(
NetDef* pred_net,
const std::unordered_set<std::string>& weights,
const std::unordered_set<int>& blocklisted_ops,
const ShapeInfoMap& shape_hints_max_bs,
const std::unordered_map<int, ShapeInfoMap>& shape_hints_per_bs) {
onnxBackendID backend_id = backend_ids_[idx_];
auto c2_supports =
[this, &shape_hints_max_bs, &blocklisted_ops, backend_id, &weights](
const caffe2::OperatorDef& op) {
return supportOpC2(
op, shape_hints_max_bs, weights, blocklisted_ops, backend_id);
};
auto c2_converter = [this,
&weights,
&shape_hints_max_bs,
&shape_hints_per_bs](const caffe2::NetDef& net) {
return SubnetToOnnxifiOpViaC2(
net, weights, shape_hints_max_bs, shape_hints_per_bs);
};
return opt::OptimizeForBackend(
*pred_net, c2_supports, c2_converter, opts_.debug);
}
opt::CutResult OnnxifiTransformer::TransformViaOnnx(
Workspace* ws,
NetDef* pred_net,
const std::unordered_set<std::string>& weights,
const std::unordered_set<int>& blocklisted_ops,
ShapeInfoMap* shape_hints_max_bs,
const std::unordered_map<int, ShapeInfoMap>& shape_hints_per_bs) {
onnxBackendID backend_id = backend_ids_[idx_];
// function to tell whether the ONNXIFI backend supports a given C2 op or not
onnx::OnnxExporter exporter(nullptr);
auto onnx_supports = [this, &exporter, &blocklisted_ops, backend_id](
const caffe2::OperatorDef& op) {
return supportOpOnnx(op, &exporter, blocklisted_ops, backend_id);
};
// function to convert runnable subgraph into an onnxifi op. We need to keep
// the same exporter throughout the process to avoid duplicated dummy name
// generation
onnx::OnnxExporter exporter2(nullptr);
auto onnx_converter = [this,
ws,
&weights,
shape_hints_max_bs,
&exporter2,
&shape_hints_per_bs](
const caffe2::NetDef& net) mutable {
return SubnetToOnnxifiOpViaOnnx(
net, weights, ws, &exporter2, shape_hints_max_bs, shape_hints_per_bs);
};
return opt::OptimizeForBackend(
*pred_net, onnx_supports, onnx_converter, opts_.debug);
}
void OnnxifiTransformer::extractPartitionInfo(const NetDef& net) {
partition_infos_.clear();
for (const auto& p : net.partition_info()) {
partition_infos_.emplace_back(p);
}
}
// Cutting off the runnable part and replace with ONNXIFI ops. Asssume the nets
// were topologically sorted
void OnnxifiTransformer::transform(
Workspace* ws,
NetDef* pred_net,
const std::vector<std::string>& weight_names,
const ShapeInfoMap& input_shape_hints,
const std::unordered_set<int>& blocklisted_ops) {
CAFFE_ENFORCE(ws);
CAFFE_ENFORCE(pred_net, "Predict net cannot be nullptr");
if (opts_.debug) {
WriteProtoToTextFile(*pred_net, "debug_pre_ssa_net.pb_txt", false);
}
// Get model id and reset Onnxifi op id to 0
model_id_ = getModelId(*pred_net);
onnxifi_op_id_ = 0;
// Unroll If ops
fetchInputsToIfOpsSubnet(pred_net);
std::unordered_set<std::string> weights(
weight_names.begin(), weight_names.end());
// SSA Rewrite the net if it has not been rewritten
ShapeInfoMap shape_hints_mapped;
if (opts_.predictor_net_ssa_rewritten) {
LOG(INFO) << "predictor net has been ssaRewritten, skip rewritting here";
annotateOpIndex(pred_net);
shape_hints_mapped = input_shape_hints;
for (const auto& w : weights) {
input_mapping_.emplace(w, w);
}
} else {
shape_hints_mapped = ssaRewriteAndMapNames(ws, pred_net, input_shape_hints);
}
// Populate shape info
// TODO(yingz): We should not need to create mapped_ws since we did not change
// any input mappings during ssarewrite. However this is here for the
// following reason: BlackBoxPredictor calls RunNetOnce before onnxifi to
// populate dimension info. However during this, it was observed, that new
// blob for output is created. This causes problem if inferShape uses original
// ws since it does not expect the output blob to be present.
Workspace mapped_ws(ws, input_mapping_);
ShapeInfoMap shape_hints_max_bs = inferShapes(
&mapped_ws, pred_net, shape_hints_mapped, opts_.bound_shape_spec);
if (opts_.use_onnx) {
shape_hints_onnx_ = stripShapeInfoMap(shape_hints_max_bs);
}
if (opts_.enforce_fp32_inputs_into_fp16) {
enforceFp32InputsToFp16(weights, pred_net, &shape_hints_max_bs);
}
if (opts_.merge_fp32_inputs_into_fp16) {
mergeFp32InputsAndConvertToFp16(
opts_.bound_shape_spec.max_batch_size,
weights,
pred_net,
&shape_hints_max_bs);
}
if (opts_.debug) {
caffe2::NetDef ssa_net;
ssa_net.CopyFrom(*pred_net);
auto* w_arg = ssa_net.add_arg();
w_arg->set_name(kInitializers);
for (const auto& w : weights) {
w_arg->add_strings(w);
}
dumpNet(ssa_net, shape_hints_max_bs, "debug_ssa_net.pb_txt");
}
extractPartitionInfo(*pred_net);
// Get backend id
getBackendId();
// Apply some filtering rules
std::unordered_set<int> new_blocklisted_ops(
blocklisted_ops.begin(), blocklisted_ops.end());
applyFilteringRules(
*pred_net, shape_hints_max_bs, weights, &new_blocklisted_ops);
// Transform the net
opt::CutResult cutResult = opts_.use_onnx ? TransformViaOnnx(
ws,
pred_net,
weights,
new_blocklisted_ops,
&shape_hints_max_bs,
opts_.shape_hints_per_bs)
: TransformViaC2(
pred_net,
weights,
new_blocklisted_ops,
shape_hints_max_bs,
opts_.shape_hints_per_bs);
auto net_opt = std::move(cutResult.net);
// Need to figure out a proper place to handle device option
net_opt.mutable_device_option()->CopyFrom(pred_net->device_option());
net_opt.set_type(pred_net->type());
pred_net->Swap(&net_opt);
addShapeToNet(*pred_net, shape_hints_max_bs);
if (opts_.debug) {
WriteProtoToTextFile(*pred_net, "debug_full_opt_net.pb_txt", false);
}
if (opts_.verify_only_single_subnet && cutResult.numberOfSubnets > 1) {
CAFFE_THROW("Multiple Onnxifi ops were created: ", cutResult.numberOfSubnets, " subnets were found. There may be unsupported operators in the model.");
}
}
} // namespace caffe2
|