1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234
|
#include "caffe2/opt/shape_info.h"
#include "caffe2/core/operator.h"
#include "caffe2/core/tensor_int8.h"
#include "caffe2/utils/string_utils.h"
#include <cctype>
namespace caffe2 {
namespace {
bool isNumber(const std::string& s) {
bool empty = true;
for (const char c : s) {
if (std::isalpha(c)) {
return false;
}
if (!std::isspace(c)) {
empty = false;
}
}
return !empty;
}
std::string toLower(const std::string& s) {
std::string t;
t.resize(s.size());
for (size_t i = 0; i < t.size(); i++) {
t[i] = std::tolower(s[i]);
}
return t;
}
TensorProto_DataType toTensorProtoDataType(const std::string& in) {
std::string s = toLower(in);
if (s == "uint8") {
return TensorProto_DataType_UINT8;
} else if (s == "int8") {
return TensorProto_DataType_INT8;
} else if (s == "uint16") {
return TensorProto_DataType_UINT16;
} else if (s == "int16") {
return TensorProto_DataType_INT16;
} else if (s == "int32") {
return TensorProto_DataType_INT32;
} else if (s == "int64") {
return TensorProto_DataType_INT64;
} else if (s == "float16" || s == "half") {
return TensorProto_DataType_FLOAT16;
} else if (s == "float") {
return TensorProto_DataType_FLOAT;
} else if (s == "double") {
return TensorProto_DataType_DOUBLE;
} else if (s == "byte") {
return TensorProto_DataType_BYTE;
} else if (s == "string") {
return TensorProto_DataType_STRING;
} else if (s == "bool") {
return TensorProto_DataType_BOOL;
} else if (s == "hash") {
return TensorProto_DataType_ZERO_COLLISION_HASH;
}
// return default data type, float
return TensorProto_DataType_FLOAT;
}
} // namespace
ShapeInfo getShapeInfoFromBlob(const Blob* blob) {
ShapeInfo shape_info;
shape_info.shape = GetTensorShapeOfBlob(blob);
if (!shape_info.shape.unknown_shape()) {
shape_info.setDimType(std::vector<TensorBoundShape::DimType>(
shape_info.shape.dims_size(), TensorBoundShape_DimType_CONSTANT));
}
if (blob->meta().id() == TypeMeta::Id<int8::Int8TensorCPU>()) {
shape_info.is_quantized = true;
LoadInt8TensorInfoOfBlob(
&shape_info.q_info.scale,
&shape_info.q_info.offset,
&shape_info.q_info.axis,
blob);
} else {
#ifndef C10_MOBILE
auto function_ptr =
ExternalTensorFunctionsBaseRegistry()->Create(blob->meta().id());
if (function_ptr != nullptr) {
shape_info.is_quantized = function_ptr->isQuantized();
function_ptr->LoadInfoOfBlob(
blob,
&shape_info.q_info.scale,
&shape_info.q_info.offset,
&shape_info.q_info.axis);
}
#endif
}
return shape_info;
}
void modifyTensorShapeDimSize(
TensorShape* tensor_shape,
int dim_index,
const int64_t old_size,
const int64_t new_size) {
CAFFE_ENFORCE(
old_size > 0, "Old size should be non-zero, old_size: ", old_size);
CAFFE_ENFORCE(
tensor_shape->dims(dim_index) % old_size == 0,
"tensor_shape->dims[",
dim_index,
"] = ",
tensor_shape->dims(dim_index),
" cannot be divided by old_size ",
old_size,
" tensor name: ",
tensor_shape->name());
int64_t modified_size = (tensor_shape->dims(dim_index) * new_size) / old_size;
tensor_shape->set_dims(dim_index, modified_size);
}
void changeTensorBoundShapes(
TensorBoundShape& tensor_shape_and_type,
const int64_t old_batch_size,
const int64_t old_seq_size,
const int64_t new_batch_size,
const int64_t new_seq_size) {
CAFFE_ENFORCE(
tensor_shape_and_type.dim_type().size() ==
tensor_shape_and_type.shape().dims().size());
for (int i = 0; i < tensor_shape_and_type.dim_type().size(); i++) {
TensorBoundShape_DimType dim_type = tensor_shape_and_type.dim_type(i);
// Need to change max_batch_size
if (dim_type == TensorBoundShape_DimType_BATCH ||
dim_type == TensorBoundShape_DimType_BATCH_OF_FEATURE_MAX ||
dim_type == TensorBoundShape_DimType_BATCH_OF_FEATURE_MAX_DEFAULT) {
TensorShape* tensor_shape = tensor_shape_and_type.mutable_shape();
modifyTensorShapeDimSize(tensor_shape, i, old_batch_size, new_batch_size);
}
// Need to change max_seq_size
if (dim_type == TensorBoundShape_DimType_BATCH_OF_FEATURE_MAX_DEFAULT ||
dim_type == TensorBoundShape_DimType_FEATURE_MAX_DEFAULT) {
TensorShape* tensor_shape = tensor_shape_and_type.mutable_shape();
modifyTensorShapeDimSize(tensor_shape, i, old_seq_size, new_seq_size);
}
}
}
ShapeInfoMap extractShapeInfoFromTensorBoundShapes(
TensorBoundShapes tensor_bound_shapes,
int64_t new_max_batch_size,
int64_t new_max_feature_len) {
ShapeInfoMap shape_info_map;
if (new_max_batch_size == -1) {
new_max_batch_size = tensor_bound_shapes.max_batch_size();
}
if (new_max_feature_len == -1) {
new_max_feature_len = tensor_bound_shapes.max_feature_len();
}
for (auto& tensor_bound_shape : *(tensor_bound_shapes.mutable_shapes())) {
std::vector<TensorBoundShape::DimType> dim_types;
dim_types.reserve(tensor_bound_shape.shape().dims_size());
for (auto dim_type : tensor_bound_shape.dim_type()) {
dim_types.emplace_back(TensorBoundShape::DimType(dim_type));
}
changeTensorBoundShapes(
tensor_bound_shape,
tensor_bound_shapes.max_batch_size(),
tensor_bound_shapes.max_feature_len(),
new_max_batch_size,
new_max_feature_len);
shape_info_map[tensor_bound_shape.name()] =
// NOLINTNEXTLINE(performance-move-const-arg)
ShapeInfo(dim_types, std::move(tensor_bound_shape.shape()));
}
return shape_info_map;
}
bool operator==(const ShapeInfo& lhs, const ShapeInfo& rhs) {
return lhs.getDimType() == rhs.getDimType() &&
lhs.shape.SerializeAsString() == rhs.shape.SerializeAsString();
}
ShapeInfo constructShapeInfoWithDefaultDimType(
TensorShape shape,
TensorBoundShape_DimType defaultFirstDimType) {
std::vector<TensorBoundShape_DimType> dimType(
shape.dims_size(), TensorBoundShape_DimType_CONSTANT);
if (dimType.size()) {
dimType[0] = defaultFirstDimType;
}
return ShapeInfo(dimType, shape);
}
void parseShapeInfoMapFromString(
const std::string& input,
ShapeInfoMap& shape_hints) {
auto hints = caffe2::split('#', input);
for (const auto& hint : hints) {
auto kv = caffe2::split(',', hint);
CAFFE_ENFORCE_GE(kv.size(), 2, "Cannot parse shape hint: ", hint);
const auto& name = kv[0];
TensorShape shape;
size_t size = kv.size();
CAFFE_ENFORCE_GT(size, 1);
if (!isNumber(kv[size - 1])) {
// last value is the type
shape.set_data_type(toTensorProtoDataType(kv[size - 1]));
size--;
} else {
if (name.find("int8") != std::string::npos) {
// Kept for backwards compatibility.
// Set type explicitly to overwrite it.
shape.set_data_type(TensorProto_DataType_UINT8);
} else {
shape.set_data_type(TensorProto_DataType_FLOAT);
}
}
bool valid = true;
for (size_t i = 1; i < size; i++) {
auto dim = kv[i];
try {
shape.add_dims(std::stoi(dim));
} catch (const std::exception& e) {
valid = false;
CAFFE_THROW("Cannot parse shape hint: ", hint);
}
}
if (valid) {
shape_hints.emplace(name, constructShapeInfoWithDefaultDimType(shape));
}
}
}
} // namespace caffe2
|