File: tvm_transformer.cc

package info (click to toggle)
pytorch 1.13.1%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 139,252 kB
  • sloc: cpp: 1,100,274; python: 706,454; ansic: 83,052; asm: 7,618; java: 3,273; sh: 2,841; javascript: 612; makefile: 323; xml: 269; ruby: 185; yacc: 144; objc: 68; lex: 44
file content (330 lines) | stat: -rw-r--r-- 10,331 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
#include "caffe2/opt/tvm_transformer.h"
#include "caffe2/opt/backend_cutting.h"

namespace caffe2 {

NetDef TvmTransformer::buildTvmOp(
    const caffe2::NetDef& net,
    const std::unordered_set<std::string>& weights,
    const ShapeInfoMap& shape_hints) {
  // NOLINTNEXTLINE(clang-diagnostic-sign-compare)
  if (opts_.min_ops > net.op_size()) {
    return net;
  }
  caffe2::NetDef net_opt;
  auto* op = net_opt.add_op();
  op->set_type("TVMJit");

  // Remove the second output of Concat/Reshape from external_output.
  // And figure out what primary inputs of the net is sequence look-ups
  std::unordered_set<std::string> split_infos;
  std::unordered_set<std::string> input_set(
      net.external_input().begin(), net.external_input().end());
  std::unordered_set<std::string> seq_input_set;
  for (const auto& op0 : net.op()) {
    if ((op0.type() == "Concat" || op0.type() == "Reshape") &&
        op0.output_size() == 2) {
      split_infos.emplace(op0.output(1));
    } else if (
        op0.type() == "SparseLengthsSum" ||
        op0.type() == "SparseLengthsSumFused8BitRowwise") {
      // The indices input of SparseLengthSum should be of SEQ type
      if (op0.input_size() > 1 && input_set.count(op0.input(1))) {
        seq_input_set.emplace(op0.input(1));
      }
    } else if (
        op0.type() == "SparseLengthsWeightedSum" ||
        op0.type() == "SparseLengthsWeightedSumFused8BitRowwise") {
      // The weight and indices inputs of SparseLengthWeightedSum should be of
      // SEQ type
      if (op0.input_size() > 1 && input_set.count(op0.input(1))) {
        seq_input_set.emplace(op0.input(1));
      }
      if (op0.input_size() > 2 && input_set.count(op0.input(2))) {
        seq_input_set.emplace(op0.input(2));
      }
    }
  }

  // C2 operator bind input/output by position (they can be rewritten by e.g.
  // Memonger) while TVM runtime bind them by name. Therefore, we need to record
  // the input/output names.
  auto* input_arg = op->add_arg();
  input_arg->set_name("inputs");
  auto* output_arg = op->add_arg();
  output_arg->set_name("outputs");

  // We expose both inputs and weights as inputs of TVMJitOp
  for (const auto& i : net.external_input()) {
    net_opt.add_external_input(i);
    op->add_input(i);
    input_arg->add_strings(i);
  }
  for (const auto& i : net.external_output()) {
    if (split_infos.count(i)) {
      continue;
    }
    net_opt.add_external_output(i);
    op->add_output(i);
    output_arg->add_strings(i);
  }

  // Record the referred weights
  auto* w_arg = op->add_arg();
  std::unordered_set<std::string> referred_weights;
  for (const auto& op0 : net.op()) {
    for (const auto& i : op0.input()) {
      if (weights.count(i)) {
        referred_weights.emplace(i);
      }
    }
  }
  w_arg->set_name("weights");
  for (const auto& w : referred_weights) {
    w_arg->add_strings(w);
  }

  // Add input shape info in "input_shape_info" argument of the net
  if (!opts_.profiling_based_jit) {
    auto* shape_arg = op->add_arg();
    shape_arg->set_name("input_shape_info");
    for (const auto& i : net_opt.external_input()) {
      shape_arg->mutable_tensors()->Add()->CopyFrom(
          wrapShapeInfoIntoTensorProto(i, shape_hints.at(i)));
    }
  }

  // Add original net as a fallback
  auto* original_net_arg = op->add_arg();
  original_net_arg->set_name("original_net");
  original_net_arg->mutable_n()->CopyFrom(net);

  // Add model id
  AddArgument("model_id", model_id_, op);

  // Add op id
  AddArgument("tvm_op_id", tvm_op_id_++, op);

  // Add nominal batch size
  AddArgument("nominal_batch_size", opts_.bound_shape_spec.max_batch_size, op);

  // Add nominal sequence size
  AddArgument("nominal_seq_size", opts_.bound_shape_spec.max_seq_size, op);

  // Indices of the input blobs with sequence type
  auto* seq_input_indices_arg = op->add_arg();
  seq_input_indices_arg->set_name("seq_input_indices");
  int64_t input_idx = 0;
  for (const auto& input : net_opt.external_input()) {
    if (seq_input_set.count(input)) {
      seq_input_indices_arg->add_ints(input_idx);
    }
    ++input_idx;
  }

  if (opts_.debug) {
    AddArgument("debug", 1, op);
  }

  if (opts_.profiling_based_jit) {
    AddArgument("profiling_based_jit", 1, op);
  }

  return net_opt;
}

// Cutting off the runnable part and replace with TVMJitOPs. Asssume the nets
// were topologically sorted
void TvmTransformer::transform(
    Workspace* ws,
    NetDef* pred_net,
    const std::vector<std::string>& weight_names,
    const ShapeInfoMap& input_shape_hints,
    const std::unordered_set<int>& blocklisted_ops) {
  CAFFE_ENFORCE(ws);
  CAFFE_ENFORCE(pred_net, "Predict net cannot be nullptr");

  // Save the args of the net so that we can copy it to opt net later
  std::vector<Argument> args;
  for (const auto& arg : pred_net->arg()) {
    args.emplace_back(arg);
  }

  // Get model id and reset TVM op id to 0
  model_id_ = getModelId(*pred_net);
  tvm_op_id_ = 0;

  std::unordered_set<std::string> weights(
      weight_names.begin(), weight_names.end());

  // input_shape_hints should only contain shapes of inputs and not activations
  ShapeInfoMap shape_hints;
  if (!opts_.profiling_based_jit) {
    shape_hints =
        inferShapes(ws, pred_net, input_shape_hints, opts_.bound_shape_spec);
  }

  if (opts_.debug) {
    dumpNet(*pred_net, shape_hints, "debug_net.pbtxt");
  }

  // We are ready to transform the net
  NetDef net_opt =
      applyTvmTransform(pred_net, weights, blocklisted_ops, shape_hints);

  // Copy the properties
  for (const auto& arg : args) {
    net_opt.add_arg()->CopyFrom(arg);
  }
  net_opt.mutable_device_option()->CopyFrom(pred_net->device_option());
  pred_net->Swap(&net_opt);
  if (opts_.debug) {
    dumpNet(*pred_net, shape_hints, "debug_full_opt_net.pbtxt");
  }
}

const std::unordered_set<std::string>& TvmTransformer::getSupportedOps() {
  const static std::unordered_set<std::string> supported_ops{
      "Add",
      "BatchGather",
      "BatchMatMul",
      "Cast",
      "Clip",
      "Concat",
      "Copy",
      "DotProduct",
      "EnsureCPUOutput",
      "ExpandDims",
      "FbFCPacked",
      "FC",
      "FCTransposed",
      "Flatten",
      "Fused8BitRowwiseQuantizedToFloat",
      "Logit",
      "MatMul",
      "Mul",
      "Relu",
      "Reshape",
      "ReplaceNaN",
      "Sigmoid",
      "Slice",
      "Softmax",
      "Split",
      "Sum",
      "Tanh",
      "Transpose",
      "UnPackRecords",
  };
  return supported_ops;
}

bool TvmTransformer::canConvertFullGraph(
    const caffe2::NetDef& net,
    const std::unordered_set<int>& blocklisted_ops) {
  const auto& supported_ops = getSupportedOps();
  for (const auto& op : net.op()) {
    int pos =
        ArgumentHelper::GetSingleArgument<OperatorDef, int>(op, kNetPos, -1);
    if (blocklisted_ops.count(pos) || supported_ops.count(op.type()) == 0) {
      return false;
    }
  }
  return true;
}

NetDef TvmTransformer::applyTvmTransform(
    NetDef* pred_net,
    const std::unordered_set<std::string>& weights,
    const std::unordered_set<int>& blocklisted_ops,
    const ShapeInfoMap& shape_hints) {
  const auto profiling_based_jit = opts_.profiling_based_jit;
  auto tvm_supports = [&blocklisted_ops, &shape_hints, &profiling_based_jit](
                          const caffe2::OperatorDef& op) {
    const auto& supported_ops = getSupportedOps();
    try {
      // If the op position is block listed, return false
      int pos =
          ArgumentHelper::GetSingleArgument<OperatorDef, int>(op, kNetPos, -1);
      if (blocklisted_ops.count(pos)) {
        LOG(INFO) << "op is being blocklisted, " << op.type() << " at position " << pos;
        return false;
      }

      // If we don't have proper shape info for the op, we cannot compile it
      // properly, return false
      if (!profiling_based_jit) {
        for (const auto& i : op.input()) {
          if (shape_hints.find(i) == shape_hints.end()) {
            LOG(INFO) << "Skipping op " << op.type()
                      << " due to missing shape info for input " << i;
            return false;
          }
        }
      }

      // If TVM c2 frontend doesn't support this op, return false
      // TODO: This should be something like TVMC2Frontend::supports(op);
      return (supported_ops.count(op.type()) != 0);
    } catch (const std::exception& ex) {
      LOG(ERROR) << "Caught exception when querying op " << op.type()
                 << ", what: " << ex.what();
      return false;
    }
  };
  auto tvm_op_converter =
      [this, &weights, &shape_hints](const caffe2::NetDef& net) {
        return buildTvmOp(net, weights, shape_hints);
      };

  return opt::OptimizeForBackend(*pred_net, tvm_supports, tvm_op_converter).net;
}

void tvmTransform(
    NetDef* net,
    Workspace* ws,
    const std::vector<std::string>& input_names,
    const std::vector<std::string>& output_names,
    const std::vector<std::string>& weight_names,
    const ShapeInfoMap& shape_hints,
    const std::unordered_set<int>& blocklisted_ops,
    int32_t max_batch_size,
    int32_t max_seq_size,
    int32_t num_embeddings,
    int32_t embedding_size,
    int32_t tvm_min_ops,
    bool tvm_profiling_based_jit,
    bool debug) {
  TvmTransformOptions opts;
  opts.bound_shape_spec.max_batch_size = max_batch_size;
  opts.bound_shape_spec.max_seq_size = max_seq_size;
  opts.bound_shape_spec.num_embeddings = num_embeddings;
  opts.bound_shape_spec.embedding_length = embedding_size;
  opts.min_ops = tvm_min_ops;
  opts.profiling_based_jit = tvm_profiling_based_jit;
  opts.debug = debug;
  TvmTransformer ts(opts);

  // Clean up the external input/output of the net
  cleanUpPredictNet(net, input_names, output_names, weight_names);

  ts.transform(ws, net, weight_names, shape_hints, blocklisted_ops);
}

void cleanUpPredictNet(
    NetDef* net,
    const std::vector<std::string>& input_names,
    const std::vector<std::string>& output_names,
    const std::vector<std::string>& weight_names) {
  net->mutable_external_input()->Clear();
  net->mutable_external_output()->Clear();
  for (const auto& i : input_names) {
    net->add_external_input(i);
  }
  for (const auto& w : weight_names) {
    net->add_external_input(w);
  }
  for (const auto& o : output_names) {
    net->add_external_output(o);
  }
}
} // namespace caffe2