1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226
|
#include "caffe2/perfkernels/embedding_lookup.h"
#include "caffe2/core/types.h"
#include "caffe2/perfkernels/common.h"
#include <c10/util/irange.h>
namespace caffe2 {
/**
* Base implementation does runtime dispatch for each segment of reduction
* @return false if there is an out-of-bound error
*/
template <
typename IndexType,
typename InType,
typename OutType,
bool IS_WEIGHT_POSITIONAL = false>
static bool EmbeddingLookupGenericSlow(
const int64_t block_size,
const int64_t output_size,
const int64_t index_size,
const int64_t data_size,
const InType* input,
const IndexType* indices,
const int* lengths,
const float* weights, // optional, can be null for sum reducer
const float* scale_bias, // optional scale & bias params for uint8 input
bool normalize_by_lengths,
OutType* out) {
int64_t current = 0;
for (const auto m : c10::irange(output_size)) {
memset(out, 0, sizeof(OutType) * block_size);
if (current + lengths[m] > index_size) {
return false;
}
for (int i = 0; i < lengths[m]; ++i) {
int64_t idx = indices[current];
if (idx < 0 || idx >= data_size) {
return false;
}
#ifdef __GNUC__
if (current + 1 < index_size) {
__builtin_prefetch(input + block_size * indices[current + 1], 0, 1);
}
#endif // __GNUC__
float w = 1.f, b = 0.f;
if (weights) {
w = weights[IS_WEIGHT_POSITIONAL ? i : current];
}
if (scale_bias) {
b = w * scale_bias[2 * indices[current] + 1];
w = w * scale_bias[2 * indices[current]];
}
for (const auto j : c10::irange(block_size)) {
out[j] += w * input[block_size * indices[current] + j] + b;
}
++current;
}
if (normalize_by_lengths && lengths[m]) {
// NOLINTNEXTLINE(bugprone-narrowing-conversions,cppcoreguidelines-narrowing-conversions)
float scale = 1.f / lengths[m];
for (const auto j : c10::irange(block_size)) {
out[j] *= scale;
}
}
out += block_size;
}
return current == index_size;
}
// clang-format off
// Proxy back to generic implementation
#define EMBEDDING_SPECIALIZATION( \
IndexType, InTypeName, InType, OutType, IS_WEIGHT_POSITIONAL) \
bool \
EmbeddingLookup_##IndexType##_##InTypeName##_##OutType##_##IS_WEIGHT_POSITIONAL##__base( \
const int64_t block_size, \
const int64_t output_size, \
const int64_t index_size, \
const int64_t data_size, \
const InType* input, \
const IndexType* indices, \
const int* lengths, \
const float* weights, \
const float* scale_bias, \
bool normalize_by_lengths, \
OutType* out) { \
return EmbeddingLookupGenericSlow< \
IndexType, \
InType, \
OutType, \
IS_WEIGHT_POSITIONAL>( \
block_size, \
output_size, \
index_size, \
data_size, \
input, \
indices, \
lengths, \
weights, \
scale_bias, \
normalize_by_lengths, \
out); \
} \
decltype( \
EmbeddingLookup_##IndexType##_##InTypeName##_##OutType##_##IS_WEIGHT_POSITIONAL##__base) \
EmbeddingLookup_##IndexType##_##InTypeName##_##OutType##_##IS_WEIGHT_POSITIONAL##__avx2_fma; \
bool \
EmbeddingLookup_##IndexType##_##InTypeName##_##OutType##_##IS_WEIGHT_POSITIONAL( \
const int64_t block_size, \
const int64_t output_size, \
const int64_t index_size, \
const int64_t data_size, \
const InType* input, \
const IndexType* indices, \
const int* lengths, \
const float* weights, \
const float* scale_bias, \
bool normalize_by_lengths, \
OutType* out) { \
if (std::is_same<InType, uint8_t>::value) { \
CAFFE_ENFORCE(scale_bias != nullptr, "scale_bias must not be nullptr"); \
} else { \
CAFFE_ENFORCE(scale_bias == nullptr, "scale_bias must be nullptr"); \
} \
AVX2_FMA_DO( \
EmbeddingLookup_##IndexType##_##InTypeName##_##OutType##_##IS_WEIGHT_POSITIONAL, \
block_size, \
output_size, \
index_size, \
data_size, \
input, \
indices, \
lengths, \
weights, \
scale_bias, \
normalize_by_lengths, \
out); \
BASE_DO( \
EmbeddingLookup_##IndexType##_##InTypeName##_##OutType##_##IS_WEIGHT_POSITIONAL, \
block_size, \
output_size, \
index_size, \
data_size, \
input, \
indices, \
lengths, \
weights, \
scale_bias, \
normalize_by_lengths, \
out); \
} \
template <> \
void EmbeddingLookup<IndexType, InType, OutType, IS_WEIGHT_POSITIONAL>( \
const int64_t block_size, \
const int64_t output_size, \
const int64_t index_size, \
const int64_t data_size, \
const InType* input, \
const IndexType* indices, \
const int* lengths, \
const float* weights, \
const float* scale_bias, \
bool normalize_by_lengths, \
OutType* out) { \
bool success = \
EmbeddingLookup_##IndexType##_##InTypeName##_##OutType##_##IS_WEIGHT_POSITIONAL( \
block_size, \
output_size, \
index_size, \
data_size, \
input, \
indices, \
lengths, \
weights, \
scale_bias, \
normalize_by_lengths, \
out); \
if (success) { \
return; \
} \
int64_t current = 0; \
for (int m = 0; m < output_size; ++m) { \
for (int i = 0; i < lengths[m]; ++i) { \
CAFFE_ENFORCE_LT(current, index_size); \
IndexType idx = indices[current]; \
CAFFE_ENFORCE( \
0 <= idx && idx < data_size, \
"Index ", \
current, \
" is out of bounds: ", \
idx, \
", range 0 to ", \
data_size); \
++current; \
} \
} \
CAFFE_ENFORCE_EQ( \
current, \
index_size, \
"Your input seems to be incorrect: the sum of lengths values should be " \
"the size of the indices tensor, but it appears not."); \
}
// clang-format on
EMBEDDING_SPECIALIZATION(int32_t, float, float, float, false);
EMBEDDING_SPECIALIZATION(int64_t, float, float, float, false);
EMBEDDING_SPECIALIZATION(int32_t, half, at::Half, float, false);
EMBEDDING_SPECIALIZATION(int64_t, half, at::Half, float, false);
EMBEDDING_SPECIALIZATION(int32_t, uint8_t, uint8_t, float, false);
EMBEDDING_SPECIALIZATION(int64_t, uint8_t, uint8_t, float, false);
EMBEDDING_SPECIALIZATION(int32_t, float, float, float, true);
EMBEDDING_SPECIALIZATION(int64_t, float, float, float, true);
EMBEDDING_SPECIALIZATION(int32_t, half, at::Half, float, true);
EMBEDDING_SPECIALIZATION(int64_t, half, at::Half, float, true);
EMBEDDING_SPECIALIZATION(int32_t, uint8_t, uint8_t, float, true);
EMBEDDING_SPECIALIZATION(int64_t, uint8_t, uint8_t, float, true);
#undef EMBEDDING_SPECIALIZATION
} // namespace caffe2
|