File: embedding_lookup_idx.cc

package info (click to toggle)
pytorch 1.13.1%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 139,252 kB
  • sloc: cpp: 1,100,274; python: 706,454; ansic: 83,052; asm: 7,618; java: 3,273; sh: 2,841; javascript: 612; makefile: 323; xml: 269; ruby: 185; yacc: 144; objc: 68; lex: 44
file content (229 lines) | stat: -rw-r--r-- 16,729 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
#include "caffe2/perfkernels/embedding_lookup_idx.h"

#include <c10/util/Half.h>
#include <c10/util/irange.h>
#include "caffe2/core/common.h"
#include "caffe2/core/logging.h"
#include "caffe2/perfkernels/common.h"

namespace caffe2 {

/**
 * Base implementation does runtime dispatch for each segment of reduction
 * @return false if there is an out-of-bound error
 */
template <
    typename IndexType,
    typename InType,
    typename OutType,
    bool IS_WEIGHT_POSITIONAL = false>
static bool EmbeddingLookupGenericSlowIdx(
    const int64_t block_size,
    const int64_t output_size,
    const int64_t index_size,
    const int64_t data_size,
    const InType* input,
    const IndexType* indices,
    const IndexType* offsets,
    const float* weights, // optional, can be null for sum reducer
    const float* scale_bias, // optional scale & bias params for uint8 input
    bool normalize_by_lengths,
    OutType* out) {
  int64_t current = 0;
  for (const auto m : c10::irange(output_size)) {
    memset(out, 0, sizeof(OutType) * block_size);
    if (current != offsets[m] - offsets[0]) {
      return false;
    }
    int64_t start_offset = offsets[m];
    int64_t end_offset = offsets[m + 1];
    int64_t length = end_offset - start_offset;
    for (const auto i : c10::irange(start_offset, end_offset)) {
      int64_t idx = indices[current];
      if (idx < 0 || idx >= data_size) {
        return false;
      }
#ifdef __GNUC__
      if (current + 1 < index_size) {
        __builtin_prefetch(input + block_size * indices[current + 1], 0, 1);
      }
#endif // __GNUC__

      float w = 1.f, b = 0.f;
      if (weights) {
        w = weights[IS_WEIGHT_POSITIONAL ? i - start_offset : current];
      }
      if (scale_bias) {
        b = w * scale_bias[2 * indices[current] + 1];
        w = w * scale_bias[2 * indices[current]];
      }

      for (const auto j : c10::irange(block_size)) {
        out[j] += w * input[block_size * indices[current] + j] + b;
      }

      ++current;
    }
    if (normalize_by_lengths && length) {
      float scale = 1.f / length;
      for (const auto j : c10::irange(block_size)) {
        out[j] *= scale;
      }
    }
    out += block_size;
  }
  return current == index_size;
}

// clang-format off
// Proxy back to generic implementation
#define EMBEDDING_IDX_SPECIALIZATION(                                                                 \
    IndexType, InTypeName, InType, OutType, IS_WEIGHT_POSITIONAL)                                     \
  bool                                                                                                \
      EmbeddingLookupIdx_##IndexType##_##InTypeName##_##OutType##_##IS_WEIGHT_POSITIONAL##__base(     \
          const int64_t block_size,                                                                   \
          const int64_t output_size,                                                                  \
          const int64_t index_size,                                                                   \
          const int64_t data_size,                                                                    \
          const InType* input,                                                                        \
          const IndexType* indices,                                                                   \
          const IndexType* offsets,                                                                     \
          const float* weights,                                                                       \
          const float* scale_bias,                                                                    \
          bool normalize_by_lengths,                                                                  \
          OutType* out) {                                                                             \
    return EmbeddingLookupGenericSlowIdx<                                                             \
        IndexType,                                                                                    \
        InType,                                                                                       \
        OutType,                                                                                      \
        IS_WEIGHT_POSITIONAL>(                                                                        \
        block_size,                                                                                   \
        output_size,                                                                                  \
        index_size,                                                                                   \
        data_size,                                                                                    \
        input,                                                                                        \
        indices,                                                                                      \
        offsets,                                                                                      \
        weights,                                                                                      \
        scale_bias,                                                                                   \
        normalize_by_lengths,                                                                         \
        out);                                                                                         \
  }                                                                                                   \
  decltype(                                                                                           \
      EmbeddingLookupIdx_##IndexType##_##InTypeName##_##OutType##_##IS_WEIGHT_POSITIONAL##__base)     \
      EmbeddingLookupIdx_##IndexType##_##InTypeName##_##OutType##_##IS_WEIGHT_POSITIONAL##__avx2_fma; \
  bool                                                                                                \
      EmbeddingLookupIdx_##IndexType##_##InTypeName##_##OutType##_##IS_WEIGHT_POSITIONAL(             \
          const int64_t block_size,                                                                   \
          const int64_t output_size,                                                                  \
          const int64_t index_size,                                                                   \
          const int64_t data_size,                                                                    \
          const InType* input,                                                                        \
          const IndexType* indices,                                                                   \
          const IndexType* offsets,                                                                     \
          const float* weights,                                                                       \
          const float* scale_bias,                                                                    \
          bool normalize_by_lengths,                                                                  \
          OutType* out) {                                                                             \
    if (std::is_same<InType, uint8_t>::value) {                                                       \
      CAFFE_ENFORCE(scale_bias != nullptr, "scale_bias must not be nullptr");                         \
    } else {                                                                                          \
      CAFFE_ENFORCE(scale_bias == nullptr, "scale_bias must be nullptr");                             \
    }                                                                                                 \
    AVX2_FMA_DO(                                                                                      \
        EmbeddingLookupIdx_##IndexType##_##InTypeName##_##OutType##_##IS_WEIGHT_POSITIONAL,           \
        block_size,                                                                                   \
        output_size,                                                                                  \
        index_size,                                                                                   \
        data_size,                                                                                    \
        input,                                                                                        \
        indices,                                                                                      \
        offsets,                                                                                      \
        weights,                                                                                      \
        scale_bias,                                                                                   \
        normalize_by_lengths,                                                                         \
        out);                                                                                         \
    BASE_DO(                                                                                          \
        EmbeddingLookupIdx_##IndexType##_##InTypeName##_##OutType##_##IS_WEIGHT_POSITIONAL,           \
        block_size,                                                                                   \
        output_size,                                                                                  \
        index_size,                                                                                   \
        data_size,                                                                                    \
        input,                                                                                        \
        indices,                                                                                      \
        offsets,                                                                                      \
        weights,                                                                                      \
        scale_bias,                                                                                   \
        normalize_by_lengths,                                                                         \
        out);                                                                                         \
  }                                                                                                   \
  template <>                                                                                         \
  void EmbeddingLookupIdx<IndexType, InType, OutType, IS_WEIGHT_POSITIONAL>(                          \
      const int64_t block_size,                                                                       \
      const int64_t output_size,                                                                      \
      const int64_t index_size,                                                                       \
      const int64_t data_size,                                                                        \
      const InType* input,                                                                            \
      const IndexType* indices,                                                                       \
      const IndexType* offsets,                                                                         \
      const float* weights,                                                                           \
      const float* scale_bias,                                                                        \
      bool normalize_by_lengths,                                                                      \
      OutType* out) {                                                                                 \
    bool success =                                                                                    \
        EmbeddingLookupIdx_##IndexType##_##InTypeName##_##OutType##_##IS_WEIGHT_POSITIONAL(           \
            block_size,                                                                               \
            output_size,                                                                              \
            index_size,                                                                               \
            data_size,                                                                                \
            input,                                                                                    \
            indices,                                                                                  \
            offsets,                                                                                  \
            weights,                                                                                  \
            scale_bias,                                                                               \
            normalize_by_lengths,                                                                     \
            out);                                                                                     \
    if (success) {                                                                                    \
      return;                                                                                         \
    }                                                                                                 \
    int64_t current = 0;                                                                              \
    for (int m = 0; m < output_size; ++m) {                                                           \
      for (int64_t i = offsets[m]; i < offsets[m + 1]; ++i) {                                         \
        CAFFE_ENFORCE_LT(current, index_size);                                                        \
        IndexType idx = indices[current];                                                             \
        CAFFE_ENFORCE(                                                                                \
            0 <= idx && idx < data_size,                                                              \
            "Index ",                                                                                 \
            current,                                                                                  \
            " is out of bounds: ",                                                                    \
            idx,                                                                                      \
            ", range 0 to ",                                                                          \
            data_size);                                                                               \
        ++current;                                                                                    \
      }                                                                                               \
    }                                                                                                 \
    CAFFE_ENFORCE_EQ(                                                                                 \
        current,                                                                                      \
        index_size,                                                                                   \
        "Your input seems to be incorrect: the sum of lengths values should be "                      \
        "the size of the indices tensor, but it appears not.");                                       \
  }
// clang-format on

EMBEDDING_IDX_SPECIALIZATION(int32_t, float, float, float, false);
EMBEDDING_IDX_SPECIALIZATION(int64_t, float, float, float, false);
EMBEDDING_IDX_SPECIALIZATION(int32_t, half, at::Half, float, false);
EMBEDDING_IDX_SPECIALIZATION(int64_t, half, at::Half, float, false);
EMBEDDING_IDX_SPECIALIZATION(int32_t, uint8_t, uint8_t, float, false);
EMBEDDING_IDX_SPECIALIZATION(int64_t, uint8_t, uint8_t, float, false);

EMBEDDING_IDX_SPECIALIZATION(int32_t, float, float, float, true);
EMBEDDING_IDX_SPECIALIZATION(int64_t, float, float, float, true);
EMBEDDING_IDX_SPECIALIZATION(int32_t, half, at::Half, float, true);
EMBEDDING_IDX_SPECIALIZATION(int64_t, half, at::Half, float, true);
EMBEDDING_IDX_SPECIALIZATION(int32_t, uint8_t, uint8_t, float, true);
EMBEDDING_IDX_SPECIALIZATION(int64_t, uint8_t, uint8_t, float, true);

#undef EMBEDDING_IDX_SPECIALIZATION

} // namespace caffe2