File: lstm_unit_cpu-impl.h

package info (click to toggle)
pytorch 1.13.1%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 139,252 kB
  • sloc: cpp: 1,100,274; python: 706,454; ansic: 83,052; asm: 7,618; java: 3,273; sh: 2,841; javascript: 612; makefile: 323; xml: 269; ruby: 185; yacc: 144; objc: 68; lex: 44
file content (161 lines) | stat: -rw-r--r-- 4,320 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
#pragma once
#include <string.h>
#include <cmath>
#include <cstdint>
#include "c10/util/irange.h"
#include "caffe2/utils/conversions.h"

#if (ENABLE_VECTORIZATION > 0) && !defined(_DEBUG) && !defined(DEBUG)
#if defined(__clang__) && (__clang_major__ > 7)
#define IS_SANITIZER                          \
  ((__has_feature(address_sanitizer) == 1) || \
   (__has_feature(memory_sanitizer) == 1) ||  \
   (__has_feature(thread_sanitizer) == 1) ||  \
   (__has_feature(undefined_sanitizer) == 1))

#if IS_SANITIZER == 0
#define VECTOR_LOOP _Pragma("clang loop vectorize(enable)")
#endif
#elif defined(_OPENMP) && (_OPENMP >= 201511)
// Support with OpenMP4.5 and above
#define VECTOR_LOOP _Pragma("omp for simd")
#endif
#endif

#ifndef VECTOR_LOOP
// Not supported
#define VECTOR_LOOP
#endif

namespace caffe2 {
namespace perfkernels {
namespace {
template <typename T>
inline T sigmoid(T x) {
  return 1 / (1 + std::exp(-x));
}

template <typename T>
inline T host_tanh(T x) {
  return 2 * sigmoid(2 * x) - 1;
}

template <typename T>
inline void LstmUnitImpl(
    const int N,
    const int D,
    const int t,
    const T* H_prev,
    const T* C_prev,
    const T* X,
    const int32_t* seqLengths,
    const bool drop_states,
    T* C,
    T* H,
    const float forget_bias) {
  const T forgetBias = convert::To<float, T>(forget_bias);
  for (const auto n : c10::irange(N)) {
    const bool valid = seqLengths == nullptr || t < seqLengths[n];
    if (!valid) {
      if (drop_states) {
        memset(H, 0, sizeof(T) * D);
        memset(C, 0, sizeof(T) * D);
      } else {
        memcpy(H, H_prev, sizeof(T) * D);
        memcpy(C, C_prev, sizeof(T) * D);
      }
    } else {
      const T* X_D = &X[D];
      const T* X_2D = &X[2 * D];
      const T* X_3D = &X[3 * D];
      VECTOR_LOOP for (const auto d : c10::irange(D)) {
        const T i = sigmoid(X[d]);
        const T f = sigmoid(X_D[d] + forgetBias);
        const T o = sigmoid(X_2D[d]);
        const T g = host_tanh(X_3D[d]);
        const T c_prev = C_prev[d];
        const T c = f * c_prev + i * g;
        C[d] = c;
        const T host_tanh_c = host_tanh(c);
        H[d] = o * host_tanh_c;
      }
    }
    H_prev += D;
    C_prev += D;
    X += 4 * D;
    C += D;
    H += D;
  }
}

template <typename T>
inline void LstmUnitGradientImpl(
    int N,
    int D,
    int t,
    const T* C_prev,
    const T* X,
    const int32_t* seqLengths,
    const T* C,
    const T* H,
    const T* C_diff,
    const T* H_diff,
    bool drop_states,
    T* H_prev_diff,
    T* C_prev_diff,
    T* X_diff,
    const float forget_bias) {
  const T localForgetBias = convert::To<float, T>(forget_bias);
  for (const auto n : c10::irange(N)) {
    const bool valid = seqLengths == nullptr || t < seqLengths[n];

    if (!valid) {
      if (drop_states) {
        memset(C_prev_diff, 0, sizeof(T) * D);
        memset(H_prev_diff, 0, sizeof(T) * D);
      } else {
        memcpy(H_prev_diff, H_diff, sizeof(T) * D);
        memcpy(C_prev_diff, C_diff, sizeof(T) * D);
      }
      memset(X_diff, 0, 4 * sizeof(T) * D);
    } else {
      VECTOR_LOOP for (const auto d : c10::irange(D)) {
        T* c_prev_diff = C_prev_diff + d;
        T* h_prev_diff = H_prev_diff + d;
        T* i_diff = X_diff + d;
        T* f_diff = X_diff + 1 * D + d;
        T* o_diff = X_diff + 2 * D + d;
        T* g_diff = X_diff + 3 * D + d;

        const T i = sigmoid(X[d]);
        const T f = sigmoid(X[1 * D + d] + localForgetBias);
        const T o = sigmoid(X[2 * D + d]);
        const T g = host_tanh(X[3 * D + d]);
        const T c_prev = C_prev[d];
        const T c = C[d];
        const T host_tanh_c = host_tanh(c);
        const T c_term_diff =
            C_diff[d] + H_diff[d] * o * (1 - host_tanh_c * host_tanh_c);
        *c_prev_diff = c_term_diff * f;
        *h_prev_diff = 0; // not used in 'valid' case
        *i_diff = c_term_diff * g * i * (1 - i);
        *f_diff = c_term_diff * c_prev * f * (1 - f);
        *o_diff = H_diff[d] * host_tanh_c * o * (1 - o);
        *g_diff = c_term_diff * i * (1 - g * g);
      }
    }
    C_prev += D;
    X += 4 * D;
    C += D;
    H += D;
    C_diff += D;
    H_diff += D;
    X_diff += 4 * D;
    H_prev_diff += D;
    C_prev_diff += D;
  }
}

} // namespace
} // namespace perfkernels
} // namespace caffe2