File: math_cpu_avx2.cc

package info (click to toggle)
pytorch 1.13.1%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 139,252 kB
  • sloc: cpp: 1,100,274; python: 706,454; ansic: 83,052; asm: 7,618; java: 3,273; sh: 2,841; javascript: 612; makefile: 323; xml: 269; ruby: 185; yacc: 144; objc: 68; lex: 44
file content (246 lines) | stat: -rw-r--r-- 11,364 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
// Implements the math functions for CPU.
// The implementation in this file allows us to route the underlying numerical
// computation library to different compiler options (-mno-avx2 or -mavx2).

#include <immintrin.h>
#include <cmath>
#include <cstdint>

#include <c10/util/irange.h>

using std::uint64_t;
using std::uint8_t;

namespace caffe2 {

namespace math {

static constexpr double QEPSILON = 1e-8;

void quantize_and_compress__avx2(
    const float* input_data,
    uint8_t* output_data,
    uint64_t input_size,
    uint64_t bitwidth,
    bool random,
    const float* random_buffer) {
  __m256i shuffle_mask_v = _mm256_set_epi8(
      // NOLINTNEXTLINE(bugprone-narrowing-conversions,cppcoreguidelines-avoid-magic-numbers,cppcoreguidelines-narrowing-conversions)
      0xff,
      // NOLINTNEXTLINE(bugprone-narrowing-conversions,cppcoreguidelines-avoid-magic-numbers,cppcoreguidelines-narrowing-conversions)
      0xff,
      // NOLINTNEXTLINE(bugprone-narrowing-conversions,cppcoreguidelines-avoid-magic-numbers,cppcoreguidelines-narrowing-conversions)
      0xff,
      // NOLINTNEXTLINE(bugprone-narrowing-conversions,cppcoreguidelines-avoid-magic-numbers,cppcoreguidelines-narrowing-conversions)
      0xff,
      // NOLINTNEXTLINE(bugprone-narrowing-conversions,cppcoreguidelines-avoid-magic-numbers,cppcoreguidelines-narrowing-conversions)
      0xff,
      // NOLINTNEXTLINE(bugprone-narrowing-conversions,cppcoreguidelines-avoid-magic-numbers,cppcoreguidelines-narrowing-conversions)
      0xff,
      // NOLINTNEXTLINE(bugprone-narrowing-conversions,cppcoreguidelines-avoid-magic-numbers,cppcoreguidelines-narrowing-conversions)
      0xff,
      // NOLINTNEXTLINE(bugprone-narrowing-conversions,cppcoreguidelines-avoid-magic-numbers,cppcoreguidelines-narrowing-conversions)
      0xff,
      // NOLINTNEXTLINE(bugprone-narrowing-conversions,cppcoreguidelines-avoid-magic-numbers,cppcoreguidelines-narrowing-conversions)
      0xff,
      // NOLINTNEXTLINE(bugprone-narrowing-conversions,cppcoreguidelines-avoid-magic-numbers,cppcoreguidelines-narrowing-conversions)
      0xff,
      // NOLINTNEXTLINE(bugprone-narrowing-conversions,cppcoreguidelines-avoid-magic-numbers,cppcoreguidelines-narrowing-conversions)
      0xff,
      // NOLINTNEXTLINE(bugprone-narrowing-conversions,cppcoreguidelines-avoid-magic-numbers,cppcoreguidelines-narrowing-conversions)
      0xff,
      0x0c,
      0x08,
      0x04,
      0x00,
      // NOLINTNEXTLINE(bugprone-narrowing-conversions,cppcoreguidelines-avoid-magic-numbers,cppcoreguidelines-narrowing-conversions)
      0xff,
      // NOLINTNEXTLINE(bugprone-narrowing-conversions,cppcoreguidelines-avoid-magic-numbers,cppcoreguidelines-narrowing-conversions)
      0xff,
      // NOLINTNEXTLINE(bugprone-narrowing-conversions,cppcoreguidelines-avoid-magic-numbers,cppcoreguidelines-narrowing-conversions)
      0xff,
      // NOLINTNEXTLINE(bugprone-narrowing-conversions,cppcoreguidelines-avoid-magic-numbers,cppcoreguidelines-narrowing-conversions)
      0xff,
      // NOLINTNEXTLINE(bugprone-narrowing-conversions,cppcoreguidelines-avoid-magic-numbers,cppcoreguidelines-narrowing-conversions)
      0xff,
      // NOLINTNEXTLINE(bugprone-narrowing-conversions,cppcoreguidelines-avoid-magic-numbers,cppcoreguidelines-narrowing-conversions)
      0xff,
      // NOLINTNEXTLINE(bugprone-narrowing-conversions,cppcoreguidelines-avoid-magic-numbers,cppcoreguidelines-narrowing-conversions)
      0xff,
      // NOLINTNEXTLINE(bugprone-narrowing-conversions,cppcoreguidelines-avoid-magic-numbers,cppcoreguidelines-narrowing-conversions)
      0xff,
      // NOLINTNEXTLINE(bugprone-narrowing-conversions,cppcoreguidelines-avoid-magic-numbers,cppcoreguidelines-narrowing-conversions)
      0xff,
      // NOLINTNEXTLINE(bugprone-narrowing-conversions,cppcoreguidelines-avoid-magic-numbers,cppcoreguidelines-narrowing-conversions)
      0xff,
      // NOLINTNEXTLINE(bugprone-narrowing-conversions,cppcoreguidelines-avoid-magic-numbers,cppcoreguidelines-narrowing-conversions)
      0xff,
      // NOLINTNEXTLINE(bugprone-narrowing-conversions,cppcoreguidelines-avoid-magic-numbers,cppcoreguidelines-narrowing-conversions)
      0xff,
      0x0c,
      0x08,
      0x04,
      0x00);
  __m256i permute_mask_v =
      _mm256_set_epi32(0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x04, 0x00);

  uint64_t data_per_byte = 8 / bitwidth;
  uint64_t tail = input_size % data_per_byte;
  tail = tail ? data_per_byte - tail : 0;
  uint64_t segment_size = (input_size + data_per_byte - 1) / data_per_byte;

  // basic info
  float minimum_element = INFINITY, maximum_element = -INFINITY;
  for (const auto i : c10::irange(input_size)) {
    minimum_element =
        (input_data[i] < minimum_element) ? input_data[i] : minimum_element;
    maximum_element =
        (input_data[i] > maximum_element) ? input_data[i] : maximum_element;
  }
  output_data[0] = bitwidth;
  output_data[1] = tail;
  reinterpret_cast<float*>(output_data + 2)[0] = minimum_element;
  reinterpret_cast<float*>(output_data + 2)[1] = maximum_element;

  // NOLINTNEXTLINE(bugprone-narrowing-conversions,cppcoreguidelines-narrowing-conversions)
  float gap = (maximum_element - minimum_element) / ((1 << bitwidth) - 1.0f);
  // NOLINTNEXTLINE(bugprone-narrowing-conversions,cppcoreguidelines-narrowing-conversions)
  float gap_inverse = 1. / (gap + QEPSILON);
  uint8_t max_q = (1 << bitwidth) - 1;
  uint64_t bit_start = 0;
  if (random) {
    for (uint64_t start = 0; start < input_size; start += segment_size) {
      uint64_t stride = start + segment_size <= input_size ? segment_size
                                                           : input_size - start;
      uint64_t i = 0;
      constexpr int VLEN = 8;
      for (; i < stride / VLEN * VLEN; i += VLEN) {
        __m256 r_v = _mm256_loadu_ps(&random_buffer[start + i]);
        __m256 fval_v = _mm256_loadu_ps(input_data + start + i);
        __m256 thetimes_v = _mm256_mul_ps(
            _mm256_sub_ps(fval_v, _mm256_set1_ps(minimum_element)),
            _mm256_set1_ps(gap_inverse));
        __m256 rounded_v = _mm256_floor_ps(_mm256_add_ps(thetimes_v, r_v));
        rounded_v = _mm256_max_ps(
            _mm256_setzero_ps(),
            _mm256_min_ps(_mm256_set1_ps(max_q), rounded_v));
        __m256i qval_v = _mm256_cvtps_epi32(rounded_v);
        __m256i orval_v = _mm256_cvtepu8_epi32(_mm_lddqu_si128(
            reinterpret_cast<const __m128i*>(output_data + 10 + i)));
        orval_v =
            _mm256_or_si256(orval_v, _mm256_slli_epi32(qval_v, bit_start));
        orval_v = _mm256_shuffle_epi8(orval_v, shuffle_mask_v);
        orval_v = _mm256_permutevar8x32_epi32(orval_v, permute_mask_v);
        *reinterpret_cast<int64_t*>(output_data + 10 + i) =
            _mm256_extract_epi64(orval_v, 0);
      }
      for (; i < stride; ++i) {
        float fval = input_data[start + i];
        float thetimes = (fval - minimum_element) * gap_inverse;
        float rounded = floor(thetimes + random_buffer[start + i]);
        rounded = rounded < static_cast<float>(max_q)
            ? rounded
            : static_cast<float>(max_q);
        rounded = rounded > 0.0f ? rounded : 0.0f;
        uint8_t qval = rounded;

        uint8_t orval = output_data[10 + i];
        output_data[10 + i] = orval | static_cast<uint8_t>(qval << bit_start);
      }
      bit_start += bitwidth;
    }
  } else {
    // !random
    for (uint64_t start = 0; start < input_size; start += segment_size) {
      uint64_t stride = start + segment_size <= input_size ? segment_size
                                                           : input_size - start;
      uint64_t i = 0;
      constexpr int VLEN = 8;
      for (; i < stride / VLEN * VLEN; i += VLEN) {
        __m256 fval_v = _mm256_loadu_ps(input_data + start + i);
        __m256 thetimes_v = _mm256_mul_ps(
            _mm256_sub_ps(fval_v, _mm256_set1_ps(minimum_element)),
            _mm256_set1_ps(gap_inverse));
        thetimes_v = _mm256_max_ps(
            _mm256_setzero_ps(),
            _mm256_min_ps(_mm256_set1_ps(max_q), thetimes_v));
        __m256i qval_v = _mm256_cvtps_epi32(_mm256_round_ps(
            thetimes_v, _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC));
        __m256i orval_v = _mm256_cvtepu8_epi32(_mm_lddqu_si128(
            reinterpret_cast<const __m128i*>(output_data + 10 + i)));
        orval_v =
            _mm256_or_si256(orval_v, _mm256_slli_epi32(qval_v, bit_start));
        orval_v = _mm256_shuffle_epi8(orval_v, shuffle_mask_v);
        orval_v = _mm256_permutevar8x32_epi32(orval_v, permute_mask_v);
        *reinterpret_cast<int64_t*>(output_data + 10 + i) =
            _mm256_extract_epi64(orval_v, 0);
      }
      for (; i < stride; ++i) {
        float fval = input_data[start + i];
        float thetimes = (fval - minimum_element) * gap_inverse;
        thetimes = thetimes < static_cast<float>(max_q)
            ? thetimes
            : static_cast<float>(max_q);
        thetimes = thetimes > 0.0f ? thetimes : 0.0f;
        uint8_t qval = nearbyint(thetimes);

        uint8_t orval = output_data[10 + i];
        output_data[10 + i] = orval | static_cast<uint8_t>(qval << bit_start);
      }
      bit_start += bitwidth;
    }
  } // !random
}

void decompress_and_dequantize__avx2(
    const uint8_t* input_data,
    float* output_data,
    uint64_t input_size) {
  // basic info
  const float minimum_element =
      reinterpret_cast<const float*>(input_data + 2)[0];
  const float maximum_element =
      reinterpret_cast<const float*>(input_data + 2)[1];
  const uint64_t bitwidth = input_data[0];
  const float gap =
      // NOLINTNEXTLINE(bugprone-narrowing-conversions,cppcoreguidelines-narrowing-conversions)
      (maximum_element - minimum_element) / ((1 << bitwidth) - 1.f) +
      QEPSILON; // for exact recovering

  const uint64_t tail = input_data[1];

  const uint64_t output_size = (input_size - 10) * (8 / bitwidth) - tail;
  // decoding
  uint64_t bit_start = 0;
  const uint64_t segment_size = input_size - 10;
  for (uint64_t start = 0; start < output_size; start += segment_size) {
    uint64_t stride = start + segment_size <= output_size ? segment_size
                                                          : output_size - start;
    uint8_t mask = (1 << bitwidth) - 1;
    uint64_t i = 0;
    // Can process 8 elements at a time because we need to expand uint8_t
    // to int32_t to use epi32 vector instructions.
    constexpr int VLEN = 8;
    for (; i < stride / VLEN * VLEN; i += VLEN) {
      __m128i in_v = _mm_lddqu_si128(
          reinterpret_cast<const __m128i*>(input_data + 10 + i));
      __m256i out_epi32_v = _mm256_and_si256(
          _mm256_srli_epi32(_mm256_cvtepu8_epi32(in_v), bit_start),
          _mm256_set1_epi32(mask));
      __m256 out_v = _mm256_fmadd_ps(
          _mm256_cvtepi32_ps(out_epi32_v),
          _mm256_set1_ps(gap),
          _mm256_set1_ps(minimum_element));
      _mm256_storeu_ps(output_data + start + i, out_v);
    }
    for (; i < stride; ++i) {
      output_data[start + i] =
          // NOLINTNEXTLINE(bugprone-narrowing-conversions,cppcoreguidelines-avoid-magic-numbers,cppcoreguidelines-narrowing-conversions)
          ((input_data[10 + i] >> bit_start) & mask) * gap + minimum_element;
    }
    bit_start += bitwidth;
  }
}

} // namespace math
} // namespace caffe2