1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246
|
// Implements the math functions for CPU.
// The implementation in this file allows us to route the underlying numerical
// computation library to different compiler options (-mno-avx2 or -mavx2).
#include <immintrin.h>
#include <cmath>
#include <cstdint>
#include <c10/util/irange.h>
using std::uint64_t;
using std::uint8_t;
namespace caffe2 {
namespace math {
static constexpr double QEPSILON = 1e-8;
void quantize_and_compress__avx2(
const float* input_data,
uint8_t* output_data,
uint64_t input_size,
uint64_t bitwidth,
bool random,
const float* random_buffer) {
__m256i shuffle_mask_v = _mm256_set_epi8(
// NOLINTNEXTLINE(bugprone-narrowing-conversions,cppcoreguidelines-avoid-magic-numbers,cppcoreguidelines-narrowing-conversions)
0xff,
// NOLINTNEXTLINE(bugprone-narrowing-conversions,cppcoreguidelines-avoid-magic-numbers,cppcoreguidelines-narrowing-conversions)
0xff,
// NOLINTNEXTLINE(bugprone-narrowing-conversions,cppcoreguidelines-avoid-magic-numbers,cppcoreguidelines-narrowing-conversions)
0xff,
// NOLINTNEXTLINE(bugprone-narrowing-conversions,cppcoreguidelines-avoid-magic-numbers,cppcoreguidelines-narrowing-conversions)
0xff,
// NOLINTNEXTLINE(bugprone-narrowing-conversions,cppcoreguidelines-avoid-magic-numbers,cppcoreguidelines-narrowing-conversions)
0xff,
// NOLINTNEXTLINE(bugprone-narrowing-conversions,cppcoreguidelines-avoid-magic-numbers,cppcoreguidelines-narrowing-conversions)
0xff,
// NOLINTNEXTLINE(bugprone-narrowing-conversions,cppcoreguidelines-avoid-magic-numbers,cppcoreguidelines-narrowing-conversions)
0xff,
// NOLINTNEXTLINE(bugprone-narrowing-conversions,cppcoreguidelines-avoid-magic-numbers,cppcoreguidelines-narrowing-conversions)
0xff,
// NOLINTNEXTLINE(bugprone-narrowing-conversions,cppcoreguidelines-avoid-magic-numbers,cppcoreguidelines-narrowing-conversions)
0xff,
// NOLINTNEXTLINE(bugprone-narrowing-conversions,cppcoreguidelines-avoid-magic-numbers,cppcoreguidelines-narrowing-conversions)
0xff,
// NOLINTNEXTLINE(bugprone-narrowing-conversions,cppcoreguidelines-avoid-magic-numbers,cppcoreguidelines-narrowing-conversions)
0xff,
// NOLINTNEXTLINE(bugprone-narrowing-conversions,cppcoreguidelines-avoid-magic-numbers,cppcoreguidelines-narrowing-conversions)
0xff,
0x0c,
0x08,
0x04,
0x00,
// NOLINTNEXTLINE(bugprone-narrowing-conversions,cppcoreguidelines-avoid-magic-numbers,cppcoreguidelines-narrowing-conversions)
0xff,
// NOLINTNEXTLINE(bugprone-narrowing-conversions,cppcoreguidelines-avoid-magic-numbers,cppcoreguidelines-narrowing-conversions)
0xff,
// NOLINTNEXTLINE(bugprone-narrowing-conversions,cppcoreguidelines-avoid-magic-numbers,cppcoreguidelines-narrowing-conversions)
0xff,
// NOLINTNEXTLINE(bugprone-narrowing-conversions,cppcoreguidelines-avoid-magic-numbers,cppcoreguidelines-narrowing-conversions)
0xff,
// NOLINTNEXTLINE(bugprone-narrowing-conversions,cppcoreguidelines-avoid-magic-numbers,cppcoreguidelines-narrowing-conversions)
0xff,
// NOLINTNEXTLINE(bugprone-narrowing-conversions,cppcoreguidelines-avoid-magic-numbers,cppcoreguidelines-narrowing-conversions)
0xff,
// NOLINTNEXTLINE(bugprone-narrowing-conversions,cppcoreguidelines-avoid-magic-numbers,cppcoreguidelines-narrowing-conversions)
0xff,
// NOLINTNEXTLINE(bugprone-narrowing-conversions,cppcoreguidelines-avoid-magic-numbers,cppcoreguidelines-narrowing-conversions)
0xff,
// NOLINTNEXTLINE(bugprone-narrowing-conversions,cppcoreguidelines-avoid-magic-numbers,cppcoreguidelines-narrowing-conversions)
0xff,
// NOLINTNEXTLINE(bugprone-narrowing-conversions,cppcoreguidelines-avoid-magic-numbers,cppcoreguidelines-narrowing-conversions)
0xff,
// NOLINTNEXTLINE(bugprone-narrowing-conversions,cppcoreguidelines-avoid-magic-numbers,cppcoreguidelines-narrowing-conversions)
0xff,
// NOLINTNEXTLINE(bugprone-narrowing-conversions,cppcoreguidelines-avoid-magic-numbers,cppcoreguidelines-narrowing-conversions)
0xff,
0x0c,
0x08,
0x04,
0x00);
__m256i permute_mask_v =
_mm256_set_epi32(0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x04, 0x00);
uint64_t data_per_byte = 8 / bitwidth;
uint64_t tail = input_size % data_per_byte;
tail = tail ? data_per_byte - tail : 0;
uint64_t segment_size = (input_size + data_per_byte - 1) / data_per_byte;
// basic info
float minimum_element = INFINITY, maximum_element = -INFINITY;
for (const auto i : c10::irange(input_size)) {
minimum_element =
(input_data[i] < minimum_element) ? input_data[i] : minimum_element;
maximum_element =
(input_data[i] > maximum_element) ? input_data[i] : maximum_element;
}
output_data[0] = bitwidth;
output_data[1] = tail;
reinterpret_cast<float*>(output_data + 2)[0] = minimum_element;
reinterpret_cast<float*>(output_data + 2)[1] = maximum_element;
// NOLINTNEXTLINE(bugprone-narrowing-conversions,cppcoreguidelines-narrowing-conversions)
float gap = (maximum_element - minimum_element) / ((1 << bitwidth) - 1.0f);
// NOLINTNEXTLINE(bugprone-narrowing-conversions,cppcoreguidelines-narrowing-conversions)
float gap_inverse = 1. / (gap + QEPSILON);
uint8_t max_q = (1 << bitwidth) - 1;
uint64_t bit_start = 0;
if (random) {
for (uint64_t start = 0; start < input_size; start += segment_size) {
uint64_t stride = start + segment_size <= input_size ? segment_size
: input_size - start;
uint64_t i = 0;
constexpr int VLEN = 8;
for (; i < stride / VLEN * VLEN; i += VLEN) {
__m256 r_v = _mm256_loadu_ps(&random_buffer[start + i]);
__m256 fval_v = _mm256_loadu_ps(input_data + start + i);
__m256 thetimes_v = _mm256_mul_ps(
_mm256_sub_ps(fval_v, _mm256_set1_ps(minimum_element)),
_mm256_set1_ps(gap_inverse));
__m256 rounded_v = _mm256_floor_ps(_mm256_add_ps(thetimes_v, r_v));
rounded_v = _mm256_max_ps(
_mm256_setzero_ps(),
_mm256_min_ps(_mm256_set1_ps(max_q), rounded_v));
__m256i qval_v = _mm256_cvtps_epi32(rounded_v);
__m256i orval_v = _mm256_cvtepu8_epi32(_mm_lddqu_si128(
reinterpret_cast<const __m128i*>(output_data + 10 + i)));
orval_v =
_mm256_or_si256(orval_v, _mm256_slli_epi32(qval_v, bit_start));
orval_v = _mm256_shuffle_epi8(orval_v, shuffle_mask_v);
orval_v = _mm256_permutevar8x32_epi32(orval_v, permute_mask_v);
*reinterpret_cast<int64_t*>(output_data + 10 + i) =
_mm256_extract_epi64(orval_v, 0);
}
for (; i < stride; ++i) {
float fval = input_data[start + i];
float thetimes = (fval - minimum_element) * gap_inverse;
float rounded = floor(thetimes + random_buffer[start + i]);
rounded = rounded < static_cast<float>(max_q)
? rounded
: static_cast<float>(max_q);
rounded = rounded > 0.0f ? rounded : 0.0f;
uint8_t qval = rounded;
uint8_t orval = output_data[10 + i];
output_data[10 + i] = orval | static_cast<uint8_t>(qval << bit_start);
}
bit_start += bitwidth;
}
} else {
// !random
for (uint64_t start = 0; start < input_size; start += segment_size) {
uint64_t stride = start + segment_size <= input_size ? segment_size
: input_size - start;
uint64_t i = 0;
constexpr int VLEN = 8;
for (; i < stride / VLEN * VLEN; i += VLEN) {
__m256 fval_v = _mm256_loadu_ps(input_data + start + i);
__m256 thetimes_v = _mm256_mul_ps(
_mm256_sub_ps(fval_v, _mm256_set1_ps(minimum_element)),
_mm256_set1_ps(gap_inverse));
thetimes_v = _mm256_max_ps(
_mm256_setzero_ps(),
_mm256_min_ps(_mm256_set1_ps(max_q), thetimes_v));
__m256i qval_v = _mm256_cvtps_epi32(_mm256_round_ps(
thetimes_v, _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC));
__m256i orval_v = _mm256_cvtepu8_epi32(_mm_lddqu_si128(
reinterpret_cast<const __m128i*>(output_data + 10 + i)));
orval_v =
_mm256_or_si256(orval_v, _mm256_slli_epi32(qval_v, bit_start));
orval_v = _mm256_shuffle_epi8(orval_v, shuffle_mask_v);
orval_v = _mm256_permutevar8x32_epi32(orval_v, permute_mask_v);
*reinterpret_cast<int64_t*>(output_data + 10 + i) =
_mm256_extract_epi64(orval_v, 0);
}
for (; i < stride; ++i) {
float fval = input_data[start + i];
float thetimes = (fval - minimum_element) * gap_inverse;
thetimes = thetimes < static_cast<float>(max_q)
? thetimes
: static_cast<float>(max_q);
thetimes = thetimes > 0.0f ? thetimes : 0.0f;
uint8_t qval = nearbyint(thetimes);
uint8_t orval = output_data[10 + i];
output_data[10 + i] = orval | static_cast<uint8_t>(qval << bit_start);
}
bit_start += bitwidth;
}
} // !random
}
void decompress_and_dequantize__avx2(
const uint8_t* input_data,
float* output_data,
uint64_t input_size) {
// basic info
const float minimum_element =
reinterpret_cast<const float*>(input_data + 2)[0];
const float maximum_element =
reinterpret_cast<const float*>(input_data + 2)[1];
const uint64_t bitwidth = input_data[0];
const float gap =
// NOLINTNEXTLINE(bugprone-narrowing-conversions,cppcoreguidelines-narrowing-conversions)
(maximum_element - minimum_element) / ((1 << bitwidth) - 1.f) +
QEPSILON; // for exact recovering
const uint64_t tail = input_data[1];
const uint64_t output_size = (input_size - 10) * (8 / bitwidth) - tail;
// decoding
uint64_t bit_start = 0;
const uint64_t segment_size = input_size - 10;
for (uint64_t start = 0; start < output_size; start += segment_size) {
uint64_t stride = start + segment_size <= output_size ? segment_size
: output_size - start;
uint8_t mask = (1 << bitwidth) - 1;
uint64_t i = 0;
// Can process 8 elements at a time because we need to expand uint8_t
// to int32_t to use epi32 vector instructions.
constexpr int VLEN = 8;
for (; i < stride / VLEN * VLEN; i += VLEN) {
__m128i in_v = _mm_lddqu_si128(
reinterpret_cast<const __m128i*>(input_data + 10 + i));
__m256i out_epi32_v = _mm256_and_si256(
_mm256_srli_epi32(_mm256_cvtepu8_epi32(in_v), bit_start),
_mm256_set1_epi32(mask));
__m256 out_v = _mm256_fmadd_ps(
_mm256_cvtepi32_ps(out_epi32_v),
_mm256_set1_ps(gap),
_mm256_set1_ps(minimum_element));
_mm256_storeu_ps(output_data + start + i, out_v);
}
for (; i < stride; ++i) {
output_data[start + i] =
// NOLINTNEXTLINE(bugprone-narrowing-conversions,cppcoreguidelines-avoid-magic-numbers,cppcoreguidelines-narrowing-conversions)
((input_data[10 + i] >> bit_start) & mask) * gap + minimum_element;
}
bit_start += bitwidth;
}
}
} // namespace math
} // namespace caffe2
|